ﻻ يوجد ملخص باللغة العربية
The influence of miscibility and liquid wettability during droplet impact onto thin wall films is investigated experimentally. Despite similar liquid properties and impact conditions, differences in the splashing limit, the crown extension and the duration of the ascending phase are observed. These differences are related to the interfacial tension of the droplet/wall-film liquid pairs, which is linked to their miscibility and wettability. More precisely, by calculating the crown surface energy, we show that the energy stored in the interface between droplet and wall-film (if any) is not negligible and leads to smaller crown extensions and the need of more kinetic energy to initiate splashing. Similarly, by calculating a modified capillary time taking into account all surface and interfacial tensions, we show that the interfacial tension acts as a non-negligible recoiling force, which reduces the duration of the ascending phase. The dynamics of this ascending phase is well captured for different wall-film thicknesses if accounting for the variations of the liquid masses in movement. Overall, droplet/wall-film interactions can be seen as inertio-capillary systems where the interfacial tension between droplet and wall film plays a significant role in the storage of energy and in the crown kinetics during the impact process. Besides, this analysis highlights that viscous losses have already a significant effect during the crown extension phase, by dissipating almost half of the initial energies for droplet impact onto thin wall films, and most likely by influencing the capillary time scale through damping.
In this article, we report experimental and semi analytical findings to elucidate the electrohydrodynamics EHD of a dielectric liquid droplet impact on superhydrophobic SH and hydrophilic surfaces. A wide range of Weber numbers We and electro-capilla
This progress report summarizes recent studies of electrochemical oxidation to modulate the interfacial tension of gallium-based alloys. These alloys, which are liquid at ambient conditions, have the largest interfacial tension of any liquid at room
Wettability is a pore-scale property that has an important impact on capillarity, residual trapping, and hysteresis in porous media systems. In many applications, the wettability of the rock surface is assumed to be constant in time and uniform in sp
Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the l
Particle-particle and particle-wall collisions occur in many natural and industrial applications such as sedimentation, agglomeration, and granular flows. To accurately predict the behavior of particulate flows, fundamental knowledge of the mechanism