Nonperturbative quark matter equations of state with vector interactions


الملخص بالإنكليزية

Nonperturbative equations of state (EoSs) for two and three quark flavors are constructed with the functional renormalization group (FRG) within a quark-meson model truncation augmented by vector mesons for low temperature and high density. Based on previous FRG studies without repulsive vector meson interactions the influence of isoscalar vector $omega$- and $phi$-mesons on the dynamical fluctuations of quarks and (pseudo)scalar mesons is investigated. The grand potential as well as vector meson condensates are evaluated as a function of quark chemical potential and the quark matter EoS in $beta$-equilibrium is applied to neutron star (NS) physics. The tidal deformability and mass-radius relations for hybrid stars from combined hadronic and quark matter EoSs are compared for different vector couplings. We observe a significant impact of the vector mesons on the quark matter EoS such that the resulting EoS is sufficiently stiff to support two-solar-mass neutron stars.

تحميل البحث