ﻻ يوجد ملخص باللغة العربية
We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg$^2$ of the 2013-2016 survey, which covers $>$15000 deg$^2$ at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the likelihood for the cosmological analysis we constrain secondary sources of anisotropy and foreground emission, and derive a CMB-only spectrum that extends to $ell=4000$. At large angular scales, foreground emission at 150 GHz is $sim$1% of TT and EE within our selected regions and consistent with that found by Planck. Using the same likelihood, we obtain the cosmological parameters for $Lambda$CDM for the ACT data alone with a prior on the optical depth of $tau=0.065pm0.015$. $Lambda$CDM is a good fit. The best-fit model has a reduced $chi^2$ of 1.07 (PTE=0.07) with $H_0=67.9pm1.5$ km/s/Mpc. We show that the lensing BB signal is consistent with $Lambda$CDM and limit the celestial EB polarization angle to $psi_P =-0.07^{circ}pm0.09^{circ}$. We directly cross correlate ACT with Planck and observe generally good agreement but with some discrepancies in TE. All data on which this analysis is based will be publicly released.
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4 angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observ
We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second thro
We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by cal
We present LCDM cosmological parameter constraints obtained from delensed microwave background power spectra. Lensing maps from a subset of DR4 data from the Atacama Cosmology Telescope (ACT) are used to undo the lensing effect in ACT spectra observe
We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond ell = 1000 for re