ﻻ يوجد ملخص باللغة العربية
The Unruh effect predicts a thermal response for an accelerated detector moving through the vacuum. Here we propose an interferometric scheme to observe an analogue of the circular Unruh effect using a localized laser coupled to a Bose-Einstein condensate (BEC). Quantum fluctuations in the condensate are governed by an effective relativistic field theory, and as demonstrated, the coupled laser field acts as an effective Unruh-DeWitt detector thereof. The effective speed of light is lowered by 12 orders of magnitude to the sound velocity in the BEC. For detectors traveling close to the sound speed, observation of the Unruh effect in the analogue system becomes experimentally feasible.
Observing quantum particle creation by black holes (Hawking radiation) in the astrophysical context is, in ordinary situations, hopeless. Nevertheless the Hawking effect, which depends only on kinematical properties of wave propagation in the presenc
Recent experiments have demonstrated the generation of entanglement by quasi-adiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, i
The understanding of disordered quantum systems is still far from being complete, despite many decades of research on a variety of physical systems. In this review we discuss how Bose-Einstein condensates of ultracold atoms in disordered potentials h
A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed i
Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended