ﻻ يوجد ملخص باللغة العربية
High-frequency pulse electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) were used to clarify the electronic structure of the color centers with an optically induced high-temperature spin-3/2 alignment in hexagonal 4H-, 6H- and rhombic 15R- silicon carbide (SiC) polytypes. The identification is based on resolved ligand hyperfine interactions with carbon and silicon nearest, next nearest and the more distant neighbors and on the determination of the spin state. The ground state and the excited state were demonstrated to have spin S = 3/2. The microscopic model suggested from the EPR and ENDOR results is as follows: a paramagnetic negatively charged silicon vacancy that is noncovalently bonded to a non-paramagnetic neutral carbon vacancy, located on the adjacent site along the SiC symmetry c-axis.
We discovered uniaxial oriented centers in silicon carbide having unusual performance. Here we demonstrate that the family of silicon-vacancy related centers with $S= 3/2$ in rhombic 15R-SiC crystalline matrix possess unique characteristics such as O
We demonstrate that the spin of optically addressable point defects can be coherently driven with AC electric fields. Based on magnetic-dipole forbidden spin transitions, this scheme enables spatially confined spin control, the imaging of high-freque
Silicon carbide with optically and magnetically active point defects offers unique opportunities for quantum technology applications. Since interaction with these defects commonly happens through optical excitation and de-excitation, a complete under
In this paper, we study the electron spin decoherence of single defects in silicon carbide (SiC) nuclear spin bath. We find that, although the natural abundance of $^{29}rm{Si}$ ($p_{rm{Si}}=4.7%$) is about 4 times larger than that of $^{13}{rm C}$ (
Quantum photonics plays a crucial role in the development of novel communication and sensing technologies. Color centers hosted in silicon carbide and diamond offer single photon emission and long coherence spins that can be scalably implemented in q