ﻻ يوجد ملخص باللغة العربية
We prove that a finitely generated pro-$p$ group $G$ acting on a pro-$p$ tree $T$ splits as a free amalgamated pro-$p$ product or a pro-$p$ HNN-extension over an edge stabilizer. If $G$ acts with finitely many vertex stabilizers up to conjugation we show that it is the fundamental pro-$p$ group of a finite graph of pro-$p$ groups $(cal G, Gamma)$ with edge and vertex groups being stabilizers of certain vertices and edges of $T$ respectively. If edge stabilizers are procyclic, we give a bound on $Gamma$ in terms of the minimal number of generators of $G$. We also give a criterion for a pro-$p$ group $G$ to be accessible in terms of the first cohomology $H^1(G, mathbb{F}_p[[G]])$.
We investigate a family of groups acting on a regular tree, defined by prescribing the local action almost everywhere. We study lattices in these groups and give examples of compactly generated simple groups of finite asymptotic dimension (actually o
We provide new examples of acylindrically hyperbolic groups arising from actions on simplicial trees. In particular, we consider amalgamated products and HNN-extensions, 1-relator groups, automorphism groups of polynomial algebras, 3-manifold groups
In this paper, the notion of proper proximality (introduced in [BIP18]) is studied for various families of groups that act on trees. We show that if a group acts non-elementarily by isometries on a tree such that for any two edges, the intersection o
We combine classical methods of combinatorial group theory with the theory of small cancellations over relatively hyperbolic groups to construct finitely generated torsion-free groups that have only finitely many classes of conjugate elements. Moreov
A subgroup $H$ of a group $G$ is confined if the $G$-orbit of $H$ under conjugation is bounded away from the trivial subgroup in the space $operatorname{Sub}(G)$ of subgroups of $G$. We prove a commutator lemma for confined subgroups. For groups of h