ﻻ يوجد ملخص باللغة العربية
We consider futuristic, intelligent reflecting surfaces (IRS)-aided communication between a base station (BS) and a user equipment (UE) for two distinct scenarios: a single-input, single-output (SISO) system whereby the BS has a single antenna, and a multi-input, single-output (MISO) system whereby the BS has multiple antennas. For the considered IRS-assisted downlink, we compute the effective capacity (EC), which is a quantitative measure of the statistical quality-of-service (QoS) offered by a communication system experiencing random fading. For our analysis, we consider the two widely-known assumptions on channel state information (CSI) -- i.e., perfect CSI and no CSI, at the BS. Thereafter, we first derive the distribution of the signal-to-noise ratio (SNR) for both SISO and MISO scenarios, and subsequently derive closed-form expressions for the EC under perfect CSI and no CSI cases, for both SISO and MISO scenarios. Furthermore, for the SISO and MISO systems with no CSI, it turns out that the EC could be maximized further by searching for an optimal transmission rate $r^*$, which is computed by exploiting the iterative gradient-descent method. We provide extensive simulation results which investigate the impact of the various system parameters, e.g., QoS exponent, power budget, number of transmit antennas at the BS, number of reflective elements at the IRS etc., on the EC of the system.
In this work, we propose a beam training codebook for Reconfigurable Intelligent Surface (RIS) assisted mmWave uplink communication. Beam training procedure is important to establish a reliable link between user node and Access point (AP). A codebook
In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for low-power Internet-of-Things (IoT) devices, where the IRS is exploited to improve the performance of WPCN
We consider an Intelligent Reflecting Surface (IRS)-aided multiple-input single-output (MISO) system for downlink transmission. We compare the performance of Deep Reinforcement Learning (DRL) and conventional optimization methods in finding optimal p
This paper presents the analytic framework for evaluating the ergodic capacity (EC) of the reconfigurable intelligent surface (RIS) assisted systems. Moreover, high-signal-to-noise-ratio and high-number of reflection units (RUs) approximations for th
Combining intelligent reflecting surface (IRS) and non-orthogonal multiple access (NOMA) is an effective solution to enhance communication coverage and energy efficiency. In this paper, we focus on an IRS-assisted NOMA network and propose an energy-e