ﻻ يوجد ملخص باللغة العربية
We consider It^o uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in $W^{1}_{d,loc}$, and the drift in $L_{d}$. We prove the unique strong solvability for any starting point and prove that as a function of the starting point the solutions are Holder continuous with any exponent $<1$. We also prove that if we are given a sequence of coefficients converging in an appropriate sense to the original ones, then the solutions of approximating equations converge to the solution of the original one.
This paper is a natural continuation of cite{Kr_20_2}, where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$.
This paper is a natural continuation of [8], where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$. Here we st
We prove the solvability of It^o stochastic equations with uniformly nondegenerate, bounded, measurable diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$. Actually, the powers of summability of the drift in $x$ and $t$ could be different. Our results
We consider elliptic equations with operators $L=a^{ij}D_{ij}+b^{i}D_{i}-c$ with $a$ being almost in VMO, $bin L_{d}$ and $cin L_{q}$, $cgeq0$, $d>qgeq d/2$. We prove the solvability of $Lu=fin L_{p}$ in bounded $C^{1,1}$-domains, $1<pleq q$, and of
This paper is a natural continuation of cite{Kr_20_2} and cite{Kr_21_1} where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(ma