A block-correlated coupled cluster (BCCC) method based on the generalized valence bond (GVB) wave function (GVB-BCCC in short) is proposed and implemented at the ab initio level, which represents an attractive multireference electronic structure method for strongly correlated systems. The GVB-BCCC method is demonstrated to provide accurate descriptions for multiple bond breaking in small molecules, although the GVB reference function is qualitatively wrong for the studied processes. For a challenging prototype of strongly correlated systems, tridecane with all 12 single C-C bonds at various distances, our calculations have shown that the GVB-BCCC2b method can provide highly comparable results as the density matrix renormalization group method for potential energy surfaces along simultaneous dissociation of all C-C bonds.