ترغب بنشر مسار تعليمي؟ اضغط هنا

Band structure and end states in InAs/GaSb core-shell-shell nanowires

111   0   0.0 ( 0 )
 نشر من قبل Florinda Vi\\~nas Bostr\\\"om
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum wells in InAs/GaSb heterostructures can be tuned to a topological regime associated with the quantum spin Hall effect, which arises due to an inverted band gap and hybridized electron and hole states. Here, we investigate electron-hole hybridization and the fate of the quantum spin Hall effect in a quasi one-dimensional geometry, realized in a core-shell-shell nanowire with an insulator core and InAs and GaSb shells. We calculate the band structure for an infinitely long nanowire using $mathbf{k cdot p}$ theory within the Kane model and the envelope function approximation, then map the result onto a BHZ model which is used to investigate finite-length wires. Clearly, quantum spin Hall edge states cannot appear in the core-shell-shell nanowires which lack one-dimensional edges, but in the inverted band-gap regime we find that the finite-length wires instead host localized states at the wire ends. These end states are not topologically protected, they are four-fold degenerate and split into two Kramers pairs in the presence of potential disorder along the axial direction. However, there is some remnant of the topological protection of the quantum spin Hall edge states in the sense that the end states are fully robust to (time-reversal preserving) angular disorder, as long as the bulk band gap is not closed.



قيم البحث

اقرأ أيضاً

125 - David Ferrand , Joel Cibert 2014
The strain configuration induced by the lattice mismatch in a core-shell nanowire is calculated analytically, taking into account the crystal anisotropy and the difference in stiffness constants of the two materials. The method is applied to nanowire s with the wurtzite structure or the zinc-blende structure with the hexagonal / trigonal axis along the nanowire, and the results are compared to available numerical calculations and experimental data. It is also applied to multishell nanowires, and to core-shell nanowires grown along the $<001>$ axis of cubic semiconductors.
We study theoretically the low-energy phonons and the static strain in cylindrical core/shell nanowires (NWs). Assuming pseudomorphic growth, isotropic media, and a force-free wire surface, we derive algebraic expressions for the dispersion relations , the displacement fields, and the stress and strain components from linear elasticity theory. Our results apply to NWs with arbitrary radii and arbitrary elastic constants for both core and shell. The expressions for the static strain are consistent with experiments, simulations, and previous analytical investigations; those for phonons are consistent with known results for homogeneous NWs. Among other things, we show that the dispersion relations of the torsional, longitudinal, and flexural modes change differently with the relative shell thickness, and we identify new terms in the corresponding strain tensors that are absent for uncapped NWs. We illustrate our results via the example of Ge/Si core/shell NWs and demonstrate that shell-induced strain has large effects on the hole spectrum of these systems.
The spin-orbit coupling (SOC) in semiconductors is strongly influenced by structural asymmetries, as prominently observed in bulk crystal structures that lack inversion symmetry. Here, we study an additional effect on the SOC: the asymmetry induced b y the large interface area between a nanowire core and its surrounding shell. Our experiments on purely wurtzite GaAs/AlGaAs core/shell nanowires demonstrate optical spin injection into a single free-standing nanowire and determine the effective electron g-factor of the hexagonal GaAs wurtzite phase. The spin relaxation is highly anisotropic in time-resolved micro-photoluminescence measurements on single nanowires, showing a significant increase of spin relaxation in external magnetic fields. This behavior is counterintuitive compared to bulk wurtzite crystals. We present a model for the observed electron spin dynamics highlighting the dominant role of the interface-induced SOC in these core/shell nanowires. This enhanced SOC may represent an interesting tuning parameter for the implementation of spin-orbitronic concepts in semiconductor-based structures.
We study the dynamics of excitons in GaAs/(Al,Ga)As core-shell nanowires by continuous-wave and time-resolved photoluminescence and photoluminescence excitation spectroscopy. Strong Al segregation in the shell of the nanowires leads to the formation of Ga-rich inclusions acting as quantum dots. At 10 K, intense light emission associated with these shell quantum dots is observed. The average radiative lifetime of excitons confined in the shell quantum dots is 1.7 ns. We show that excitons may tunnel toward adjacent shell quantum dots and nonradiative point defects. We investigate the changes in the dynamics of charge carriers in the shell with increasing temperature, with particular emphasis on the transfer of carriers from the shell to the core of the nanowires. We finally discuss the implications of carrier localization in the (Al,Ga)As shell for fundamental studies and optoelectronic applications based on core-shell III-As nanowires.
We show how a proper radial modulation of the composition of core-multi-shell nanowires critically enhances the control of the free-carrier density in the high-mobility core with respect to core-single-shell structures, thus overcoming the technologi cal difficulty of fine tuning the remote doping density. We calculate the electron population of the different nanowire layers as a function of the doping density and of several geometrical parameters by means of a self-consistent Schrodinger-Poisson approach: Free carriers tend to localize in the outer shell and screen the core from the electric field of the dopants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا