ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-parametric mean curvature flow with prescribed contact angle in Riemannian products

149   0   0.0 ( 0 )
 نشر من قبل Ilkka Holopainen
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Assuming that there exists a translating soliton $u_infty$ with speed $C$ and prescribed contact angle, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to $u_infty +Ct$ as $ttoinfty$.



قيم البحث

اقرأ أيضاً

173 - M. Dajczer , J. H. de Lira 2008
We prove an existence result for helicoidal graphs with prescribed mean curvature in a large class of warped product spaces which comprises space forms.
94 - Pak Tung Ho , Jinwoo Shin 2021
The prescribed scalar curvature flow was introduced to study the problem of prescribing scalar curvature on manifolds. Carlotto, Chodosh and Rubinstein have studied the convergence rate of the Yamabe flow. Inspired by their result, we study in this p aper the convergence rate of the prescribed scalar curvature flow.
We prove the existence of solutions to the asymptotic Plateau problem for hypersurfaces of prescribed mean curvature in Cartan-Hadamard manifolds $N$. More precisely, given a suitable subset $L$ of the asymptotic boundary of $N$ and a suitable functi on $H$ on $N$, we are able to construct a set of locally finite perimeter whose boundary has generalized mean curvature $H$ provided that $N$ satisfies the so-called strict convexity condition and that its sectional curvatures are bounded from above by a negative constant. We also obtain a multiplicity result in low dimensions.
We employ three different methods to prove the following result on prescribed scalar curvature plus mean curvature problem: Let $(M^n,g_0)$ be a $n$-dimensional smooth compact manifold with boundary, where $n geq 3$, assume the conformal invariant $Y (M,partial M)<0$. Given any negative smooth functions $f$ in $M$ and $h$ on $partial M$, there exists a unique conformal metric of $g_0$ such that its scalar curvature equals $f$ and mean curvature curvature equals $h$. The first two methods are sub-super-solution method and subcritical approximation, and the third method is a geometric flow. In the flow approach, assume another conformal invariant $Q(M,pa M)$ is a negative real number, for some class of initial data, we prove the short time and long time existences of the so-called prescribed scalar curvature plus mean curvature flows, as well as their asymptotic convergence. Via a family of such flows together with some additional variational arguments, under the flow assumptions we prove existence and uniqueness of positive minimizers of the associated energy functional and also the above result by analyzing asymptotic limits of the flows and the relations among some conformal invariants.
In the last 15 years, White and Huisken-Sinestrari developed a far-reaching structure theory for the mean curvature flow of mean convex hypersurfaces. Their papers provide a package of estimates and structural results that yield a precise description of singularities and of high curvature regions in a mean convex flow. In the present paper, we give a new treatment of the theory of mean convex (and k-convex) flows. This includes: (1) an estimate for derivatives of curvatures, (2) a convexity estimate, (3) a cylindrical estimate, (4) a global convergence theorem, (5) a structure theorem for ancient solutions, and (6) a partial regularity theorem. Our new proofs are both more elementary and substantially shorter than the original arguments. Our estimates are local and universal. A key ingredient in our new approach is the new non- collapsing result of Andrews. Some parts are also inspired by the work of Perelman. In a forthcoming paper, we will give a new construction of mean curvature flow with surgery based on the theorems established in the present paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا