ترغب بنشر مسار تعليمي؟ اضغط هنا

Digital Twin Enabled Smart Control Engineering as an Industrial AI: A New Framework and A Case Study

243   0   0.0 ( 0 )
 نشر من قبل YangQuan Chen Prof.
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the way towards Industry 4.0, the complexity of the industrial systems increases due to the presence of multiple agents, Cyber-Physical Systems, distributed sensing, and big data introducing unknown dynamics that affect the production goals of the manufacturing processes. Thus, Digital Twin is a breaking technology corresponding to the capacity of developing a virtual representation of any complex system in order to perform design, analysis, and behavior prediction tasks that enhance the understanding of these systems through new enabling capabilities like real-time analytics, parallel sensing, or Smart Control Engineering. In this paper, a novel framework is proposed for the design and implementation of Digital Twin applications to the development of Smart Control Engineering. The steps of this framework involve system documentation, multidomain simulation, behavioral matching, and real-time monitoring. This framework is applied to develop the Digital Twin for a real-time vision feedback infrared temperature uniformity control. The obtained results show that Digital Twin is a fundamental part of the transformation into Industry 4.0.



قيم البحث

اقرأ أيضاً

Thales new generation digital multi-missions radars, fully-digital and software-defined, like the Sea Fire and Ground Fire radars, benefit from a considerable increase of accessible degrees of freedoms to optimally design their operational modes. To effectively leverage these design choices and turn them into operational capabilities, it is necessary to develop new engineering tools, using artificial intelligence. Innovative optimization algorithms in the discrete and continuous domains, coupled with a radar Digital Twins, allowed construction of a generic tool for search mode design (beam synthesis, waveform and volume grid) compliant with the available radar time budget. The high computation speeds of these algorithms suggest tool application in a Proactive Radar configuration, which would dynamically propose to the operator, operational modes better adapted to environment, threats and the equipment failure conditions.
To demystify the Digital Twin concept, we built a simple yet representative thermal incubator system. The incubator is an insulated box fitted with a heatbed, and complete with a software system for communication, a controller, and simulation models. We developed two simulation models to predict the temperature inside the incubator, one with two free parameters and one with four free parameters. Our experiments showed that the latter model was better at predicting the thermal inertia of the heatbed itself, which makes it more appropriate for further development of the digital twin. The hardware and software used in this case study are available open source, providing an accessible platform for those who want to develop and verify their own techniques for digital twins.
Detecting inaccurate smart meters and targeting them for replacement can save significant resources. For this purpose, a novel deep-learning method was developed based on long short-term memory (LSTM) and a modified convolutional neural network (CNN) to predict electricity usage trajectories based on historical data. From the significant difference between the predicted trajectory and the observed one, the meters that cannot measure electricity accurately are located. In a case study, a proof of principle was demonstrated in detecting inaccurate meters with high accuracy for practical usage to prevent unnecessary replacement and increase the service life span of smart meters.
96 - Xing He , Qian Ai , Robert C. Qiu 2019
Digital twin (DT) is one of the most promising enabling technologies for realizing smart grids. Characterized by seamless and active---data-driven, real-time, and closed-loop---integration between digital and physical spaces, a DT is much more than a blueprint, simulation tool, or cyber-physical system (CPS). Numerous state-of-the-art technologies such as internet of things (IoT), 5G, big data, and artificial intelligence (AI) serve as a basis for DT. DT for power systems aims at situation awareness and virtual test to assist the decision-making on power grid operation and management under normal or urgent conditions. This paper, from both science paradigms and engineering practice, outlines the backgrounds, challenges, framework, tools, and possible directions of DT as a preliminary exploration. To our best knowledge, it is also the first exploration on DT in the context of power systems. Starting from the fundamental and most frequently used power flow (PF) analysis, some typical application scenarios are presented. Our work is expected to contribute some novel discoveries, as well as some high-dimensional analytics, to the engineering community. Besides, the connection of DT with big data analytics and AI may has deep impact on data science.
In metropolitan areas populated with commercial buildings, electric power supply is stringent especially during business hours. Demand side management using battery is a promising solution to mitigate peak demands, however long payback time creates b arriers for large scale adoption. In this paper, we have developed a design phase battery life-cycle cost assessment tool and a runtime controller for the building owners, taking into account the degradation of battery. In the design phase, perfect knowledge on building load profile is assumed to estimate ideal payback time. In runtime, stochastic programming and load predictions are applied to address the uncertainties in loads for producing optimal battery operation. For validation, we have performed numerical experiments using the real-life tariff model serves New York City, Zn/MnO2 battery, and state-of-the-art building simulation tool. Experimental results shows a small gap between design phase assessment and runtime control. To further examine the proposed methods, we have applied the same tariff model and performed numerical experiments on nine weather zones and three types of commercial buildings. On contrary to the common practice of shallow discharging battery for preventing phenomenal degradation, experimental results show promising payback time achieved by optimally deep discharge a battery.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا