ﻻ يوجد ملخص باللغة العربية
Using $N$-body simulations of cosmological large-scale structure formation, for the first time, we show that the anisotropic primordial non-Gaussianity (PNG) causes a scale-dependent modification, given by $1/k^2$ at small $k$ limit, in the three-dimensional power spectra of halo shapes (intrinsic alignments), whilst the conventional power spectrum of halo number density field remains unaffected. We discuss that wide-area imaging and spectrocopic surveys observing the same region of the sky allow us to constrain the quadrupole PNG coefficient $f_{rm NL}^{s=2}$ at a precision comparable with or better than that of the cosmic microwave background.
A wide range of multifield inflationary models generate non-Gaussian initial conditions in which the initial adiabatic fluctuation is of the form (zeta_G + g_{NL} zeta_G^3). We study halo clustering in these models using two different analytic method
Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatu
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One
Galaxy shapes have been observed to align with external tidal fields generated by the large-scale structures of the Universe. While the main source for these tidal fields is provided by long-wavelength density perturbations, tensor perturbations also
The anisotropy or triaxiality of massive dark matter haloes largely defines the structure of the cosmic web, in particular the filaments that join the haloes together. Here we investigate such oriented correlations in mass-Peak Patch halo catalogues