ترغب بنشر مسار تعليمي؟ اضغط هنا

Stress-strain in electron-beam activated polymeric micro-actuators

122   0   0.0 ( 0 )
 نشر من قبل Davide Giambastiani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Actuation of thin polymeric films via electron irradiation is a promising avenue to realize devices based on strain engineered two dimensional (2D) materials. Complex strain profiles demand a deep understanding of the mechanics of the polymeric layer under electron irradiation; in this article we report a detailed investigation on electron-induced stress on poly-methyl-methacrylate (PMMA) thin film material. After an assessment of stress values using a method based on dielectric cantilevers, we directly investigate the lateral shrinkage of PMMA patterns on epitaxial graphene, which reveals a universal behavior, independent of the electron acceleration energy. By knowing the stress-strain curve, we finally estimate an effective Youngs modulus of PMMA on top of graphene which is a relevant parameter for PMMA based electron-beam lithography and strain engineering applications.



قيم البحث

اقرأ أيضاً

The control of the local strain profile in 2D materials offers an invaluable tool for tailoring the electronic and photonic properties of solid-state devices. In this paper, we demonstrate a local engineering of the exciton photoluminescence (PL) ene rgy of monolayer tungsten disulfide (WS2) by means of strain. We apply a local uniaxial stress to WS2 by exploiting electron-beam patterned and actuated polymeric micrometric artificial muscles (MAMs), which we implement onto monolithic synthetic WS2/graphene heterostructures. We show that MAMs are able to induce an in-plane stress to the top WS2 layer of the van der Waals heterostructure and that the latter can slide on the graphene underneath with negligible friction. As a proof of concept for the local strain-induced PL shift experiments, we exploit a two-MAM configuration in order to apply uniaxial tensile stress on well-defined micrometric regions of WS2. Remarkably, our architecture does not require the adoption of fragile suspended microstructures. We observe a spatial modulation of the excitonic PL energy of the WS2 monolayers under stress, which agrees with the expected strain profile and attains a maximum redshift of about 40 meV at the maximum strain intensity point. After the actuation, a time-dependent PL blueshift is observed in agreement with the viscoelastic properties of the polymeric MAMs. Our approach enables inducing local and arbitrary deformation profiles and circumvents some key limitations and technical challenges of alternative strain engineering methods requiring the 2D material transfer and production of suspended membranes.
The tailoring of the physical properties of semiconductor nanomaterials by strain has been gaining increasing attention over the last years for a wide range of applications such as electronics, optoelectronics and photonics. The ability to introduce deliberate strain fields with controlled magnitude and in a reversible manner is essential for fundamental studies of novel materials and may lead to the realization of advanced multi-functional devices. A prominent approach consists in the integration of active nanomaterials, in thin epitaxial films or embedded within carrier nanomembranes, onto Pb(Mg1/3Nb2/3)O3-PbTiO3-based piezoelectric actuators, which convert electrical signals into mechanical deformation (strain). In this review, we mainly focus on recent advances in strain-tunable properties of self-assembled InAs quantum dots embedded in semiconductor nanomembranes and photonic structures. Additionally, recent works on other nanomaterials like rare-earth and metal-ion doped thin films, graphene and MoS2 or WSe2 semiconductor two-dimensional materials are also reviewed. For the sake of completeness, a comprehensive comparison between different procedures employed throughout the literature to fabricate such hybrid piezoelectric-semiconductor devices is presented. Very recently, a novel class of micro-machined piezoelectric actuators have been demonstrated for a full control of in-plane stress fields in nanomembranes, which enables producing energy-tunable sources of polarization-entangled photons in arbitrary quantum dots. Future research directions and prospects are discussed.
The control of strain in two-dimensional materials opens exciting perspectives for the engineering of their electronic properties. While this expectation has been validated by artificial-lattice studies, it remains elusive in the case of atomic latti ces. Remarkable results were obtained on nanobubbles and nano-wrinkles, or using scanning probes; microscale strain devices were implemented exploiting deformable substrates or external loads. These devices lack, however, the flexibility required to fully control and investigate arbitrary strain profiles. Here, we demonstrate a novel approach making it possible to induce strain in graphene using polymeric micrometric artificial muscles (MAMs) that contract in a controllable and reversible way under an electronic stimulus. Our method exploits the mechanical response of poly-methyl-methacrylate (PMMA) to electron-beam irradiation. Inhomogeneous anisotropic strain and out-of-plane deformation are demonstrated and studied by Raman, scanning-electron and atomic-force microscopy. These can all be easily combined with the present device architecture. The flexibility of the present method opens new opportunities for the investigation of strain and nanomechanics in two-dimensional materials.
The separation of hot carriers in semiconductors is of interest for applications such as thermovoltaic photodetection and third-generation photovoltaics. Semiconductor nanowires offer several potential advantages for effective hot-carrier separation such as: a high degree of control and flexibility in heterostructure-based band engineering, increased hot-carrier temperatures compared to bulk, and a geometry well suited for local control of light absorption. Indeed, InAs nanowires with a short InP energy barrier have been observed to produce electric power under global illumination, with an open-circuit voltage exceeding the Shockley-Queisser limit. To understand this behaviour in more detail, it is necessary to maintain control over the precise location of electron-hole pair-generation in the nanowire. In this work we perform electron-beam induced current measurements with high spatial resolution, and demonstrate the role of the InP barrier in extracting energetic electrons. We interprete the results in terms of hot-carrier separation, and extract estimates of the hot carrier mean free path.
Self-organized semiconductor quantum dots represent almost ideal two-level systems, which have strong potential to applications in photonic quantum technologies. For instance, they can act as emitters in close-to-ideal quantum light sources. Coupled quantum dot systems with significantly increased functionality are potentially of even stronger interest since they can be used to host ultra-stable singlet-triplet spin qubits for efficient spin-photon interfaces and for a deterministic photonic 2D cluster-state generation. We realize an advanced quantum dot molecule (QDM) device and demonstrate excellent optical properties. The device includes electrically controllable QDMs based on stacked quantum dots in a pin-diode structure. The QDMs are deterministically integrated into a photonic structure with a circular Bragg grating using in-situ electron beam lithography. We measure a photon extraction efficiency of up to (24$pm$4)% in good agreement with numerical simulations. The coupling character of the QDMs is clearly demonstrated by bias voltage dependent spectroscopy that also controls the orbital couplings of the QDMs and their charge state in quantitative agreement with theory. The QDM devices show excellent single-photon emission properties with a multi-photon suppression of $g^{(2)}(0) = (3.9 pm 0.5) cdot 10^{-3}$. These metrics make the developed QDM devices attractive building blocks for use in future photonic quantum networks using advanced nanophotonic hardware.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا