ﻻ يوجد ملخص باللغة العربية
Current management of bipolar disorder relies on self-reported questionnaires and interviews with clinicians. The development of objective measures of deteriorating mood may also allow for early interventions to take place to avoid transitions into depressive states. The objective of this study was to use acceleration data recorded from smartphones to predict levels of depression in a population of participants diagnosed with bipolar disorder. Data were collected from 52 participants, with a mean of 37 weeks of acceleration data with a corresponding depression score recorded per participant. Time varying hidden Markov models were used to extract weekly features of activity, sleep and circadian rhythms. Personalised regression achieved mean absolute errors of 1.00(0.57) from a possible scale of 0 to 27 and was able to classify depression with an accuracy of 0.84(0.16). The results demonstrate features derived from smartphone accelerometers are able to provide objective markers of depression. Low barriers for uptake exist due to the widespread use of smartphones, with personalised models able to account for differences in the behaviour of individuals and provide accurate predictions of depression.
Estimates of road grade/slope can add another dimension of information to existing 2D digital road maps. Integration of road grade information will widen the scope of digital maps applications, which is primarily used for navigation, by enabling driv
Bipolar disorder (BPD) is a chronic mental illness characterized by extreme mood and energy changes from mania to depression. These changes drive behaviors that often lead to devastating personal or social consequences. BPD is managed clinically with
Despite widespread use of smartphones, there is no measurement standard targeted at smartphone security behaviors. In this paper we translate a well-known cybersecurity behavioral scale into the smartphone domain and show that we can improve on this
We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classificati
Circadian rhythm is the natural biological cycle manifested in human daily routines. A regular and stable rhythm is found to be correlated with good physical and mental health. With the wide adoption of mobile and wearable technology, many types of s