ﻻ يوجد ملخص باللغة العربية
Automatic speech recognition (ASR) systems in the medical domain that focus on transcribing clinical dictations and doctor-patient conversations often pose many challenges due to the complexity of the domain. ASR output typically undergoes automatic punctuation to enable users to speak naturally, without having to vocalise awkward and explicit punctuation commands, such as period, add comma or exclamation point, while truecasing enhances user readability and improves the performance of downstream NLP tasks. This paper proposes a conditional joint modeling framework for prediction of punctuation and truecasing using pretrained masked language models such as BERT, BioBERT and RoBERTa. We also present techniques for domain and task specific adaptation by fine-tuning masked language models with medical domain data. Finally, we improve the robustness of the model against common errors made in ASR by performing data augmentation. Experiments performed on dictation and conversational style corpora show that our proposed model achieves ~5% absolute improvement on ground truth text and ~10% improvement on ASR outputs over baseline models under F1 metric.
Capitalization and punctuation are important cues for comprehending written texts and conversational transcripts. Yet, many ASR systems do not produce punctuated and case-formatted speech transcripts. We propose to use a multi-task system that can ex
Language understanding in speech-based systems have attracted much attention in recent years with the growing demand for voice interface applications. However, the robustness of natural language understanding (NLU) systems to errors introduced by aut
Developing a practical speech recognizer for a low resource language is challenging, not only because of the (potentially unknown) properties of the language, but also because test data may not be from the same domain as the available training data.
In the FAME! Project, a code-switching (CS) automatic speech recognition (ASR) system for Frisian-Dutch speech is developed that can accurately transcribe the local broadcasters bilingual archives with CS speech. This archive contains recordings with
In this paper, we present Hitachi and Paderborn Universitys joint effort for automatic speech recognition (ASR) in a dinner party scenario. The main challenges of ASR systems for dinner party recordings obtained by multiple microphone arrays are (1)