ﻻ يوجد ملخص باللغة العربية
Human learning and intelligence work differently from the supervised pattern recognition approach adopted in most deep learning architectures. Humans seem to learn rich representations by exploration and imitation, build causal models of the world, and use both to flexibly solve new tasks. We suggest a simple but effective unsupervised model which develops such characteristics. The agent learns to represent the dynamical physical properties of its environment by intrinsically motivated exploration, and performs inference on this representation to reach goals. For this, a set of self-organizing maps which represent state-action pairs is combined with a causal model for sequence prediction. The proposed system is evaluated in the cartpole environment. After an initial phase of playful exploration, the agent can execute kinematic simulations of the environments future, and use those for action planning. We demonstrate its performance on a set of several related, but different one-shot imitation tasks, which the agent flexibly solves in an active inference style.
We address one-shot imitation learning, where the goal is to execute a previously unseen task based on a single demonstration. While there has been exciting progress in this direction, most of the approaches still require a few hundred tasks for meta
Using neural networks in the reinforcement learning (RL) framework has achieved notable successes. Yet, neural networks tend to forget what they learned in the past, especially when they learn online and fully incrementally, a setting in which the we
Episodic self-imitation learning, a novel self-imitation algorithm with a trajectory selection module and an adaptive loss function, is proposed to speed up reinforcement learning. Compared to the original self-imitation learning algorithm, which sam
Humans can naturally learn to execute a new task by seeing it performed by other individuals once, and then reproduce it in a variety of configurations. Endowing robots with this ability of imitating humans from third person is a very immediate and n
We consider the problem of learning multi-stage vision-based tasks on a real robot from a single video of a human performing the task, while leveraging demonstration data of subtasks with other objects. This problem presents a number of major challen