ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Power Object Counting with Hierarchical Neural Networks

209   0   0.0 ( 0 )
 نشر من قبل Abhinav Goel
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Neural Networks (DNNs) can achieve state-of-the-art accuracy in many computer vision tasks, such as object counting. Object counting takes two inputs: an image and an object query and reports the number of occurrences of the queried object. To achieve high accuracy on such tasks, DNNs require billions of operations, making them difficult to deploy on resource-constrained, low-power devices. Prior work shows that a significant number of DNN operations are redundant and can be eliminated without affecting the accuracy. To reduce these redundancies, we propose a hierarchical DNN architecture for object counting. This architecture uses a Region Proposal Network (RPN) to propose regions-of-interest (RoIs) that may contain the queried objects. A hierarchical classifier then efficiently finds the RoIs that actually contain the queried objects. The hierarchy contains groups of visually similar object categories. Small DNNs are used at each node of the hierarchy to classify between these groups. The RoIs are incrementally processed by the hierarchical classifier. If the object in an RoI is in the same group as the queried object, then the next DNN in the hierarchy processes the RoI further; otherwise, the RoI is discarded. By using a few small DNNs to process each image, this method reduces the memory requirement, inference time, energy consumption, and number of operations with negligible accuracy loss when compared with the existing object counters.



قيم البحث

اقرأ أيضاً

Low-power computer vision on embedded devices has many applications. This paper describes a low-power technique for the object re-identification (reID) problem: matching a query image against a gallery of previously seen images. State-of-the-art tech niques rely on large, computationally-intensive Deep Neural Networks (DNNs). We propose a novel hierarchical DNN architecture that uses attribute labels in the training dataset to perform efficient object reID. At each node in the hierarchy, a small DNN identifies a different attribute of the query image. The small DNN at each leaf node is specialized to re-identify a subset of the gallery: only the images with the attributes identified along the path from the root to a leaf. Thus, a query image is re-identified accurately after processing with a few small DNNs. We compare our method with state-of-the-art object reID techniques. With a 4% loss in accuracy, our approach realizes significant resource savings: 74% less memory, 72% fewer operations, and 67% lower query latency, yielding 65% less energy consumption.
In this paper, we tackle the problem of unsupervised 3D object segmentation from a point cloud without RGB information. In particular, we propose a framework, SPAIR3D, to model a point cloud as a spatial mixture model and jointly learn the multiple-o bject representation and segmentation in 3D via Variational Autoencoders (VAE). Inspired by SPAIR, we adopt an object-specification scheme that describes each objects location relative to its local voxel grid cell rather than the point cloud as a whole. To model the spatial mixture model on point clouds, we derive the Chamfer Likelihood, which fits naturally into the variational training pipeline. We further design a new spatially invariant graph neural network to generate a varying number of 3D points as a decoder within our VAE. Experimental results demonstrate that SPAIR3D is capable of detecting and segmenting variable number of objects without appearance information across diverse scenes.
We propose a hierarchical graph neural network (GNN) model that learns how to cluster a set of images into an unknown number of identities using a training set of images annotated with labels belonging to a disjoint set of identities. Our hierarchica l GNN uses a novel approach to merge connected components predicted at each level of the hierarchy to form a new graph at the next level. Unlike fully unsupervised hierarchical clustering, the choice of grouping and complexity criteria stems naturally from supervision in the training set. The resulting method, Hi-LANDER, achieves an average of 54% improvement in F-score and 8% increase in Normalized Mutual Information (NMI) relative to current GNN-based clustering algorithms. Additionally, state-of-the-art GNN-based methods rely on separate models to predict linkage probabilities and node densities as intermediate steps of the clustering process. In contrast, our unified framework achieves a seven-fold decrease in computational cost. We release our training and inference code at https://github.com/dmlc/dgl/tree/master/examples/pytorch/hilander.
Advancements in convolutional neural networks (CNNs) have made significant strides toward achieving high performance levels on multiple object recognition tasks. While some approaches utilize information from the entire scene to propose regions of in terest, the task of interpreting a particular region or object is still performed independently of other objects and features in the image. Here we demonstrate that a scenes gist can significantly contribute to how well humans can recognize objects. These findings are consistent with the notion that humans foveate on an object and incorporate information from the periphery to aid in recognition. We use a biologically inspired two-part convolutional neural network (GistNet) that models the fovea and periphery to provide a proof-of-principle demonstration that computational object recognition can significantly benefit from the gist of the scene as contextual information. Our model yields accuracy improvements of up to 50% in certain object categories when incorporating contextual gist, while only increasing the original model size by 5%. This proposed model mirrors our intuition about how the human visual system recognizes objects, suggesting specific biologically plausible constraints to improve machine vision and building initial steps towards the challenge of scene understanding.
In this paper, we propose two modified neural networks based on dual path multi-scale fusion networks (SFANet) and SegNet for accurate and efficient crowd counting. Inspired by SFANet, the first model, which is named M-SFANet, is attached with atrous spatial pyramid pooling (ASPP) and context-aware module (CAN). The encoder of M-SFANet is enhanced with ASPP containing parallel atrous convolutional layers with different sampling rates and hence able to extract multi-scale features of the target object and incorporate larger context. To further deal with scale variation throughout an input image, we leverage the CAN module which adaptively encodes the scales of the contextual information. The combination yields an effective model for counting in both dense and sparse crowd scenes. Based on the SFANet decoder structure, M-SFANets decoder has dual paths, for density map and attention map generation. The second model is called M-SegNet, which is produced by replacing the bilinear upsampling in SFANet with max unpooling that is used in SegNet. This change provides a faster model while providing competitive counting performance. Designed for high-speed surveillance applications, M-SegNet has no additional multi-scale-aware module in order to not increase the complexity. Both models are encoder-decoder based architectures and are end-to-end trainable. We conduct extensive experiments on five crowd counting datasets and one vehicle counting dataset to show that these modifications yield algorithms that could improve state-of-the-art crowd counting methods. Codes are available at https://github.com/Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-Counting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا