ترغب بنشر مسار تعليمي؟ اضغط هنا

PDE-limits of stochastic SIS epidemics on networks

317   0   0.0 ( 0 )
 نشر من قبل Francesco Di Lauro Mr
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic epidemic models on networks are inherently high-dimensional and the resulting exact models are intractable numerically even for modest network sizes. Mean-field models provide an alternative but can only capture average quantities, thus offering little or no information about variability in the outcome of the exact process. In this paper we conjecture and numerically prove that it is possible to construct PDE-limits of the exact stochastic SIS epidemics on regular and ErdH{o}s-Renyi networks. To do this we first approximate the exact stochastic process at population level by a Birth-and-Death process (BD) (with a state space of $O(N)$ rather than $O(2^N)$) whose coefficients are determined numerically from Gillespie simulations of the exact epidemic on explicit networks. We numerically demonstrate that the coefficients of the resulting BD process are density-dependent, a crucial condition for the existence of a PDE limit. Extensive numerical tests for Regular and ErdH{o}s-Renyi networks show excellent agreement between the outcome of simulations and the numerical solution of the Fokker-Planck equations. Apart from a significant reduction in dimensionality, the PDE also provides the means to derive the epidemic outbreak threshold linking network and disease dynamics parameters, albeit in an implicit way. Perhaps more importantly, it enables the formulation and numerical evaluation of likelihoods for epidemic and network inference as illustrated in a worked out example.



قيم البحث

اقرأ أيضاً

Understanding how to effectively control an epidemic spreading on a network is a problem of paramount importance for the scientific community. The ongoing COVID-19 pandemic has highlighted the need for policies that mitigate the spread, without relyi ng on pharmaceutical interventions, that is, without the medical assurance of the recovery process. These policies typically entail lockdowns and mobility restrictions, having thus nonnegligible socio-economic consequences for the population. In this paper, we focus on the problem of finding the optimum policies that flatten the epidemic curve while limiting the negative consequences for the society, and formulate it as a nonlinear control problem over a finite prediction horizon. We utilize the model predictive control theory to design a strategy to effectively control the disease, balancing safety and normalcy. An explicit formalization of the control scheme is provided for the susceptible--infected--susceptible epidemic model over a network. Its performance and flexibility are demonstrated by means of numerical simulations.
When an epidemic spreads into a population, it is often unpractical or impossible to have a continuous monitoring of all subjects involved. As an alternative, algorithmic solutions can be used to infer the state of the whole population from a limited amount of measures. We analyze the capability of deep neural networks to solve this challenging task. Our proposed architecture is based on Graph Convolutional Neural Networks. As such it can reason on the effect of the underlying social network structure, which is recognized as the main component in the spreading of an epidemic. We test the proposed architecture with two scenarios modeled on the CoVid-19 pandemic: a generic homogeneous population, and a toy model of Boston metropolitan area.
We first generalise ideas discussed by Kiss et al. (2015) to prove a theorem for generating exact closures (here expressing joint probabilities in terms of their constituent marginal probabilities) for susceptible-infectious-removed (SIR) dynamics on arbitrary graphs (networks). For Poisson transmission and removal processes, this enables us to obtain a systematic reduction in the number of differential equations needed for an exact `moment closure representation of the underlying stochastic model. We define `transmission blocks as a possible extension of the block concept in graph theory and show that the order at which the exact moment closure representation is curtailed is the size of the largest transmission block. More generally, approximate closures of the hierarchy of moment equations for these dynamics are typically defined for the first and second order yielding mean-field and pairwise models respectively. It is frequently implied that, in principle, closed models can be written down at arbitrary order if only we had the time and patience to do this. However, for epidemic dynamics on networks, these higher-order models have not been defined explicitly. Here we unambiguously define hierarchies of approximate closed models that can utilise subsystem states of any order, and show how well-known models are special cases of these hierarchies.
Amidst the current COVID-19 pandemic, quantifying the effects of strategies that mitigate the spread of infectious diseases is critical. This article presents a compartmental model that addresses the role of random viral testing, follow-up contact tr acing, and subsequent isolation of infectious individuals to stabilize the spread of a disease. We propose a branching model and an individual (or agent) based model, both of which capture the stochastic, heterogeneous nature of interactions within a community. The branching model is used to derive new analytical results for the trade-offs between the different mitigation strategies, with the surprising result that a communitys resilience to disease outbreaks is independent of its underlying network structure.
We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases, like dengue, and the threshold of the disease. The coexistence space is composed by two structures representing the human and mosquito populatio ns. The human population follows a susceptible-infected-recovered (SIR) type dynamics and the mosquito population follows a susceptible-infected-susceptible (SIS) type dynamics. The human infection is caused by infected mosquitoes and vice-versa so that the SIS and SIR dynamics are interconnected. We develop a truncation scheme to solve the evolution equations from which we get the threshold of the disease and the reproductive ratio. The threshold of the disease is also obtained by performing numerical simulations. We found that for certain values of the infection rates the spreading of the disease is impossible whatever is the death rate of infected mosquito.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا