ﻻ يوجد ملخص باللغة العربية
The location of the neutron drip line, currently known for only the lightest elements, remains a fundamental question in nuclear physics. Its description is a challenge for microscopic nuclear energy density functionals, as it must take into account in a realistic way not only the nuclear potential, but also pairing correlations, deformation effects and coupling to the continuum. The recently developed deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) aims to provide a unified description of even-even nuclei throughout the nuclear chart. Here, the DRHBc with the successful density functional PC-PK1 is used to investigate whether and how deformation influences the prediction for the neutron drip-line location for even-even nuclei with 8<=Z<=20, where many isotopes are predicted deformed. The results are compared with those based on the spherical relativistic continuum Hartree-Bogoliubov (RCHB) theory and discussed in terms of shape evolution and the variational principle. It is found that the Ne and Ar drip-line nuclei are different after the deformation effect is included. The direction of the change is not necessarily towards an extended drip line, but rather depends on the evolution of the degree of deformation towards the drip line. Deformation effects as well as pairing and continuum effects treated in a consistent way can affect critically the theoretical description of the neutron drip-line location.
The predictive power of the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) for nuclear mass is examined in the superheavy region, $102 le Z le 120$. The accuracy of predicting the 10 (56) measured (measured and empirical) masses
The aim of this work is to develop the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) theory based on the point-coupling density functionals and extend it to provide a unified description for all even-even nuclei in the nuclear
A deformed relativistic Hartree-Bogoliubov (DRHB) model is developed aiming at a proper description of exotic nuclei, particularly deformed ones with large spatial extension. In order to give an adequate description of both the contribution of the co
The cranked relativistic Hartree+Bogoliubov theory has been applied for a systematic study of the nuclei around 254No, the heaviest nuclei for which detailed spectroscopic data are available. The deformation, rotational response, pairing correlations
The cranked relativistic Hartree+Bogoliubov theory has been applied for a systematic study of the nuclei around 254No, the heaviest elements for which detailed spectroscopic data are available. The deformation, rotational response, pairing correlatio