ﻻ يوجد ملخص باللغة العربية
We study the stratification of the singular locus of four dimensional $mathcal{N}=2$ Coulomb branches. We present a set of self-consistency conditions on this stratification which can be used to extend the classification of scale-invariant rank 1 Coulomb branch geometries to two complex dimensions, and beyond. The calculational simplicity of the arguments presented here stems from the fact that the main ingredients needed -- the rank 1 deformation patterns and the pattern of inclusions of rank 2 strata -- are discrete topological data which satisfy strong self-consistency conditions through their relationship to the central charges of the SCFT. This relationship of the stratification data to the central charges is used here, but is derived and explained in a companion paper by one of the authors. We illustrate the use of these conditions by re-analyzing many previously-known examples of rank 2 SCFTs, and also by finding examples of new theories. The power of these conditions stems from the fact that for Coulomb branch stratifications a conjecturally complete list of physically allowed elementary slices is known. By contrast, constraining the possible elementary slices of symplectic singularities relevant for Higgs branch stratifications remains an open problem.
We initiate a systematic analysis of moduli spaces of vacua of four dimensional $mathcal{N}=3$ SCFTs. Our analysis is based on the one hand on the properties of $mathcal{N}=3$ chiral rings --- which we review in detail and contrast with chiral rings
We construct several novel examples of 3d $mathcal{N}=2$ models whose free energy scales as $N^{3/2}$ at large $N$. This is the first step towards the identification of field theories with an M-theory dual. Furthermore, we match the volumes extracted
S-folds are a non-perturbative generalization of orientifold 3-planes which figure prominently in the construction of 4D $mathcal{N} = 3$ SCFTs and have also recently been used to realize examples of 4D $mathcal{N} = 2$ SCFTs. In this paper we develo
We classify orbifold geometries which can be interpreted as moduli spaces of four-dimensional $mathcal{N}geq 3$ superconformal field theories up to rank 2 (complex dimension 6). The large majority of the geometries we find correspond to moduli spaces
We study a set of four-dimensional $mathcal{N}=2$ superconformal field theories (SCFTs) $widehat{Gamma}(G)$ labeled by a pair of simply-laced Lie groups $Gamma$ and $G$. They are constructed out of gauging a number of $mathcal{D}_p(G)$ and $(G, G)$ c