ﻻ يوجد ملخص باللغة العربية
Layered transition-metal chalcogenides (Zr,Hf)GeTe$_{4}$ were screened out from database of Atomwork as a candidate for pressure-induced superconductivity due to their narrow band gap and high density of state near the Fermi level. The (Zr,Hf)GeTe$_{4}$ samples were synthesized in single crystal and then the compositional ratio, crystal structures, and valence states were investigated via energy dispersive spectrometry, single crystal X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. The pressure-induced superconductivity in both crystals were first time reported by using a diamond anvil cell with a boron-doped diamond electrode and an undoped diamond insulating layer. The maximum superconducting transition temperatures of ZrGeTe$_{4}$ and HfGeTe$_{4}$ were 6.5 K under 57 GPa and 6.6 K under 60 GPa, respectively.
We report a strategy to induce superconductivity in the BiS$_2$-based compound LaOBiS$_2$. Instead of substituting F for O, we increase the charge-carrier density (electron dope) via substitution of tetravalent Th$^{+4}$, Hf$^{+4}$, Zr$^{+4}$, and Ti
In this review, we present a comprehensive overview of superconductivity in electron-doped metal nitride halides $M$N$X$ ($M$ = Ti, Zr, Hf; $X$ = Cl, Br, I) with layered crystal structure and two-dimensional electronic states. The parent compounds ar
Ytterbium (Yb) metal is divalent and nonmagnetic but would be expected under sufficient pressure to become trivalent and magnetic. We have carried out electrical resistivity and ac magnetic susceptibility measurements on Yb to pressures as high as 17
We investigate the pressure and temperature dependence of the lattice dynamics of the underdoped, stoichiometric, high temperature superconductor YBa2Cu4O8 by means of Raman spectroscopy and ab initio calculations. This system undergoes a reversible
The discovery of intrinsic magnetism in atomically thin two-dimensional transition-metal trichalcogenides has attracted intense research interest due to the exotic properties of magnetism and potential applications in devices. Pressure has proven to