ترغب بنشر مسار تعليمي؟ اضغط هنا

Path Integral Based Convolution and Pooling for Graph Neural Networks

114   0   0.0 ( 0 )
 نشر من قبل Zheng Ma
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph neural networks (GNNs) extends the functionality of traditional neural networks to graph-structured data. Similar to CNNs, an optimized design of graph convolution and pooling is key to success. Borrowing ideas from physics, we propose a path integral based graph neural networks (PAN) for classification and regression tasks on graphs. Specifically, we consider a convolution operation that involves every path linking the message sender and receiver with learnable weights depending on the path length, which corresponds to the maximal entropy random walk. It generalizes the graph Laplacian to a new transition matrix we call maximal entropy transition (MET) matrix derived from a path integral formalism. Importantly, the diagonal entries of the MET matrix are directly related to the subgraph centrality, thus providing a natural and adaptive pooling mechanism. PAN provides a versatile framework that can be tailored for different graph data with varying sizes and structures. We can view most existing GNN architectures as special cases of PAN. Experimental results show that PAN achieves state-of-the-art performance on various graph classification/regression tasks, including a new benchmark dataset from statistical mechanics we propose to boost applications of GNN in physical sciences.



قيم البحث

اقرأ أيضاً

Recent progress in the development of efficient computational algorithms to price financial derivatives is summarized. A first algorithm is based on a path integral approach to option pricing, while a second algorithm makes use of a neural network pa rameterization of option prices. The accuracy of the two methods is established from comparisons with the results of the standard procedures used in quantitative finance.
Convolution and pooling are the key operations to learn hierarchical representation for graph classification, where more expressive $k$-order($k>1$) method requires more computation cost, limiting the further applications. In this paper, we investiga te the strategy of selecting $k$ via neighborhood information gain and propose light $k$-order convolution and pooling requiring fewer parameters while improving the performance. Comprehensive and fair experiments through six graph classification benchmarks show: 1) the performance improvement is consistent to the $k$-order information gain. 2) the proposed convolution requires fewer parameters while providing competitive results. 3) the proposed pooling outperforms SOTA algorithms in terms of efficiency and performance.
Recent years have witnessed the emergence and development of graph neural networks (GNNs), which have been shown as a powerful approach for graph representation learning in many tasks, such as node classification and graph classification. The researc h on the robustness of these models has also started to attract attentions in the machine learning field. However, most of the existing work in this area focus on the GNNs for node-level tasks, while little work has been done to study the robustness of the GNNs for the graph classification task. In this paper, we aim to explore the vulnerability of the Hierarchical Graph Pooling (HGP) Neural Networks, which are advanced GNNs that perform very well in the graph classification in terms of prediction accuracy. We propose an adversarial attack framework for this task. Specifically, we design a surrogate model that consists of convolutional and pooling operators to generate adversarial samples to fool the hierarchical GNN-based graph classification models. We set the preserved nodes by the pooling operator as our attack targets, and then we perturb the attack targets slightly to fool the pooling operator in hierarchical GNNs so that they will select the wrong nodes to preserve. We show the adversarial samples generated from multiple datasets by our surrogate model have enough transferability to attack current state-of-art graph classification models. Furthermore, we conduct the robust train on the target models and demonstrate that the retrained graph classification models are able to better defend against the attack from the adversarial samples. To the best of our knowledge, this is the first work on the adversarial attack against hierarchical GNN-based graph classification models.
We demonstrate how graph neural networks can be used to solve combinatorial optimization problems. Our approach is broadly applicable to canonical NP-hard problems in the form of quadratic unconstrained binary optimization problems, such as maximum c ut, minimum vertex cover, maximum independent set, as well as Ising spin glasses and higher-order generalizations thereof in the form of polynomial unconstrained binary optimization problems. We apply a relaxation strategy to the problem Hamiltonian to generate a differentiable loss function with which we train the graph neural network and apply a simple projection to integer variables once the unsupervised training process has completed. We showcase our approach with numerical results for the canonical maximum cut and maximum independent set problems. We find that the graph neural network optimizer performs on par or outperforms existing solvers, with the ability to scale beyond the state of the art to problems with millions of variables.
Graph convolutional neural networks (GCNNs) are a powerful extension of deep learning techniques to graph-structured data problems. We empirically evaluate several pooling methods for GCNNs, and combinations of those graph pooling methods with three different architectures: GCN, TAGCN, and GraphSAGE. We confirm that graph pooling, especially DiffPool, improves classification accuracy on popular graph classification datasets and find that, on average, TAGCN achieves comparable or better accuracy than GCN and GraphSAGE, particularly for datasets with larger and sparser graph structures.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا