ﻻ يوجد ملخص باللغة العربية
This work is a study of some possible background sources in the XENON1T environment which might affect the energy spectrum of electronic recoil events in the lower side and might contribute to the observed excess. We have identified some additional possible backgrounds, like $^{41}$Ca, $^{49}$V, $^{63}$Ni, $^{106}$Ru and $^{125}$Sb coming from cosmogenic production, where the former two emit monoenergetic $X$-rays and the latter three have $beta$ decays, or isotopes, like $^{210}$Pb, from the decay chain of $^{222}$Rn emanated in liquid xenon from the materials, or isotopes, like $^{137}$Cs, produced due to neutron capture. We perform a $chi^2$ fitting of the ER spectrum from these backgrounds along with tritium to the observed excess events by varying their individual rates to understand whether they can be present to contribute to the low energy excess or their presence is constrained from the data. We also study the possibility of simultaneous presence of more than one such backgrounds, and how this affects the rates required by individual backgrounds to explain the excess.
The XENON1T collaboration has observed an excess in electronic recoil events below $5~mathrm{keV}$ over the known background, which could originate from beyond-the-Standard-Model physics. The solar axion is a well-motivated model that has been propos
Recently XENON1T Collaboration announced that they observed some excess in the electron recoil energy around a 2-3 keV. We show that this excess can be interpreted as exothermic scattering of excited dark matter (XDM), $XDM + e_{atomic} rightarrow DM
Very recently, the Xenon1T collaboration has reported an intriguing electron recoil excess, which may imply for light dark matter. In order to interpret this anomaly, we propose the atmospheric dark matter (ADM) from the inelastic collision of cosmic
We argue that the interpretation in terms of solar axions of the recent XENON1T excess is not tenable when confronted with astrophysical observations of stellar evolution. We discuss the reasons why the emission of a flux of solar axions sufficiently
We show that the electron recoil excess around 2 keV claimed by the Xenon collaboration can be fitted by DM or DM-like particles having a fast component with velocity of order $sim 0.1$. Those particles cannot be part of the cold DM halo of our Galax