Enhancement in Power Conversion Efficiency of CdS Quantum Dot Sensitized Solar Cells Through a Decrease in Light Reflection


الملخص بالإنكليزية

In this research, the effect of Magnesium Fluoride (MgF2) Anti-Reflection (AR) layer was investigated in quantum dot sensitized solar cells (QDSCs). MgF2 nanoparticles with the dominant size of 20 nm were grown by a thermal evaporation method and a thin layer was formed on the front side of the fluorine-doped tin oxide (FTO) substrate. In order to study the effect of the AR layer on the efficiency of solar cells, this substrate was utilized in CdS QDSCs. In this conventional structure of QDSC, TiO2 nanocrystals (NCs) were applied on the FTO substrate, and then it was sensitized with CdS quantum dots (QDs). According to the results, the QDSCs with MgF2 AR layer represented the maximum Power Conversion Efficiency (PCE) of 3%. This efficiency was increased by about 47% compared to the reference cell without the AR layer. The reason is attributed to the presence of the AR layer and the reduction of incident light reflected from the surface of the solar cell.

تحميل البحث