ﻻ يوجد ملخص باللغة العربية
We show that in a special class of dark sector models, the hydrogen atom can serve as a portal to new physics, through its decay occurring in abundant populations in the Sun and on Earth. The large fluxes of hydrogen decay daughter states can be detected via their decay or scattering. By constructing two models for either detection channel, we show that the recently reported excess in electron recoils at XENON1T could be explained by such signals in large regions of parameter space unconstrained by proton and hydrogen decay limits.
We explore a novel possibility that dark matter has a light mass below 1GeV in a lepton portal dark matter model. There are Yukawa couplings involving dark matter, left-handed leptons and an extra scalar doublet in the model. In the light mass region
The significant neutrino flux at high rapidity at the LHC motivates dedicated forward detectors to study the properties of neutrinos at TeV energies. We investigate magnetic dipole interactions between the active neutrinos and new sterile states at e
Hydrogen oscillation into a dark-sector state $H$ has recently been proposed as a novel mechanism through which hydrogen can be cooled during the dark ages -- without direct couplings between the Standard Model and dark matter. In this work we demons
We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symme
We propose a new portal coupling to dark matter by taking advantage of the nonminimally coupled portal sector to the Ricci scalar. Such a portal sector conformally induces couplings to the trace of the energy-momentum tensor of matters including high