ﻻ يوجد ملخص باللغة العربية
With AMD reinforcing their ambition in the scientific high performance computing ecosystem, we extend the hardware scope of the Ginkgo linear algebra package to feature a HIP backend for AMD GPUs. In this paper, we report and discuss the porting effort from CUDA, the extension of the HIP framework to add missing features such as cooperative groups, the performance price of compiling HIP code for AMD architectures, and the design of a library providing native backends for NVIDIA and AMD GPUs while minimizing code duplication by using a shared code base.
The High Energy Physics (HEP) experiments, such as those at the Large Hadron Collider (LHC), traditionally consume large amounts of CPU cycles for detector simulations and data analysis, but rarely use compute accelerators such as GPUs. As the LHC is
Nonequispaced discrete Fourier transformation (NDFT) is widely applied in all aspects of computational science and engineering. The computational efficiency and accuracy of NDFT has always been a critical issue in hindering its comprehensive applicat
General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an effici
Conventional GPU implementations of Strassens algorithm (Strassen) typically rely on the existing high-performance matrix multiplication (GEMM), trading space for time. As a result, such approaches can only achieve practical speedup for relatively la
Practical aperture synthesis imaging algorithms work by iterating between estimating the sky brightness distribution and a comparison of a prediction based on this estimate with the measured data (visibilities). Accuracy in the latter step is crucial