ﻻ يوجد ملخص باللغة العربية
The solid electrolyte interphase (SEI) is regarded as the most complex but the least understood constituent in secondary batteries using liquid and solid electrolytes. The nanostructures of SEIs were recently reported to be equally important to the chemistry of SEIs for stabilizing Li metal in liquid electrolyte. However, the dearth of such knowledge in all-solid-state battery (ASSB) has hindered a complete understanding of how certain solid-state electrolytes, such as LiPON, manifest exemplary stability against Li metal. Characterizing such solid-solid interfaces is difficult due to the buried, highly reactive, and beam-sensitive nature of the constituents within. By employing cryogenic electron microscopy (cryo-EM), the interphase between Li metal and LiPON is successfully preserved and probed, revealing a multilayer mosaic SEI structure with concentration gradients of nitrogen and phosphorous, materializing as crystallites within an amorphous matrix. This unique SEI nanostructure is less than 80 nm and is shown stable and free of any organic lithium containing species or lithium fluoride components, in contrast to SEIs often found in state-of-the-art organic liquid electrolytes. Our findings reveal insights on the nanostructures and chemistry of such SEIs as a key component in lithium metal batteries to stabilize Li metal anode.
By means of Density Functional Theory calculations we evaluate several lithium carbonate - graphite interface models as a prototype of the Solid Electrolyte Interphase capping layer on graphite anodes in lithium-ion batteries. It is found that only a
The existence of passivating layers at the interfaces is a major factor enabling modern lithium-ion (Li-ion) batteries. Their properties determine the cycle life, performance, and safety of batteries. A special case is the solid electrolyte interphas
Using cryogenic transmission electron microscopy, we revealed three dimensional (3D) structural details of the electrochemically plated lithium (Li) flakes and their solid electrolyte interphase (SEI), including the composite SEI skin-layer and SEI f
With rapidly growing photoconversion efficiencies, hybrid perovskite solar cells have emerged as promising contenders for next generation, low-cost photovoltaic technologies. Yet, the presence of nanoscale defect clusters, that form during the fabric
Continued growth of the solid electrolyte interphase (SEI) is the major reason for capacity fade in modern lithium-ion batteries. This growth is made possible by a yet unidentified transport mechanism that limits the passivating ability of the SEI to