ﻻ يوجد ملخص باللغة العربية
Hypergraphs provide a natural representation for many real world datasets. We propose a novel framework, HNHN, for hypergraph representation learning. HNHN is a hypergraph convolution network with nonlinear activation functions applied to both hypernodes and hyperedges, combined with a normalization scheme that can flexibly adjust the importance of high-cardinality hyperedges and high-degree vertices depending on the dataset. We demonstrate improved performance of HNHN in both classification accuracy and speed on real world datasets when compared to state of the art methods.
In this paper, we present a hypergraph neural networks (HGNN) framework for data representation learning, which can encode high-order data correlation in a hypergraph structure. Confronting the challenges of learning representation for complex data i
We train spiking deep networks using leaky integrate-and-fire (LIF) neurons, and achieve state-of-the-art results for spiking networks on the CIFAR-10 and MNIST datasets. This demonstrates that biologically-plausible spiking LIF neurons can be integr
Despite the prevalence of hypergraphs in a variety of high-impact applications, there are relatively few works on hypergraph representation learning, most of which primarily focus on hyperlink prediction, often restricted to the transductive learning
Hypergraphs have gained increasing attention in the machine learning community lately due to their superiority over graphs in capturing super-dyadic interactions among entities. In this work, we propose a novel approach for the partitioning of k-unif
Previous hypergraph expansions are solely carried out on either vertex level or hyperedge level, thereby missing the symmetric nature of data co-occurrence, and resulting in information loss. To address the problem, this paper treats vertices and hyp