The resolution of Nihos last conjecture concerning sequences, codes, and Boolean functions


الملخص بالإنكليزية

A new method is used to resolve a long-standing conjecture of Niho concerning the crosscorrelation spectrum of a pair of maximum length linear recursive sequences of length $2^{2 m}-1$ with relative decimation $d=2^{m+2}-3$, where $m$ is even. The result indicates that there are at most five distinct crosscorrelation values. Equivalently, the result indicates that there are at most five distinct values in the Walsh spectrum of the power permutation $f(x)=x^d$ over a finite field of order $2^{2 m}$ and at most five distinct nonzero weights in the cyclic code of length $2^{2 m}-1$ with two primitive nonzeros $alpha$ and $alpha^d$. The method used to obtain this result proves constraints on the number of roots that certain seventh degree polynomials can have on the unit circle of a finite field. The method also works when $m$ is odd, in which case the associated crosscorrelation and Walsh spectra have at most six distinct values.

تحميل البحث