ﻻ يوجد ملخص باللغة العربية
Given two elements of a vector space acted on by a reductive group, we ask whether they lie in the same orbit, and if not, whether one lies in the orbit closure of the other. We develop techniques to optimize the orbit and orbit closure algorithms and apply these to give a partial classification of orbit closure containments in the case of cubic surfaces with infinitely many singular points, which are known to fall into 13 normal forms. We also discuss the computational obstructions to completing this classification, and discuss tools for future work in this direction.
We explore the connection between the rank of a polynomial and the singularities of its vanishing locus. We first describe the singularity of generic polynomials of fixed rank. We then focus on cubic surfaces. Cubic surfaces with isolated singulariti
Let G be a reductive linear algebraic group, H a reductive subgroup of G and X an affine G-variety. Let Y denote the set of fixed points of H in X, and N(H) the normalizer of H in G. In this paper we study the natural map from the quotient of Y by N(
Let M_0^R be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space H^4 and form th
We determine the Cox rings of the minimal resolutions of cubic surfaces with at most rational double points, of blow ups of the projective plane at non-general configurations of six points and of three dimensional smooth Fano varieties of Picard numbers one and two.
In this paper, we develop a new method to classify abelian automorphism groups of hypersurfaces. We use this method to classify (Theorem 4.2) abelian groups that admit a liftable action on a smooth cubic fourfold. A parallel result (Theorem 5.1) is obtained for quartic surfaces.