ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributionally Robust Profit Opportunities

70   0   0.0 ( 0 )
 نشر من قبل Derek Singh
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper expands the notion of robust profit opportunities in financial markets to incorporate distributional uncertainty using Wasserstein distance as the ambiguity measure. Financial markets with risky and risk-free assets are considered. The infinite dimensional primal problems are formulated, leading to their simpler finite dimensional dual problems. A principal motivating question is how does distributional uncertainty help or hurt the robustness of the profit opportunity. Towards answering this question, some theory is developed and computational experiments are conducted. Finally some open questions and suggestions for future research are discussed.



قيم البحث

اقرأ أيضاً

This paper expands the work on distributionally robust newsvendor to incorporate moment constraints. The use of Wasserstein distance as the ambiguity measure is preserved. The infinite dimensional primal problem is formulated; problem of moments dual ity is invoked to derive the simpler finite dimensional dual problem. An important research question is: How does distributional ambiguity affect the optimal order quantity and the corresponding profits/costs? To investigate this, some theory is developed and a case study in auto sales is performed. We conclude with some comments on directions for further research.
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity set s, which can be generalized to sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization methods. We prove a theorem that generalizes the classical duality in the mathematical problem of moments. Enabled by this theorem, we reformulate the maximization with respect to measures in DRO into the dual program that searches for RKHS functions. Using universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations such as polynomial losses and knowledge of the Lipschitz constant. We then establish a connection between DRO and stochastic optimization with expectation constraints. Finally, we propose practical algorithms based on both batch convex solvers and stochastic functional gradient, which apply to general optimization and machine learning tasks.
We extend Relative Robust Portfolio Optimisation models to allow portfolios to optimise their distance to a set of benchmarks. Portfolio managers are also given the option of computing regret in a way which is more in line with market practices than other approaches suggested in the literature. In addition, they are given the choice of simply adding an extra constraint to their optimisation problem instead of outright changing the objective function, as is commonly suggested in the literature. We illustrate the benefits of this approach by applying it to equity portfolios in a variety of regions.
In this paper, we examine the effect of background risk on portfolio selection and optimal reinsurance design under the criterion of maximizing the probability of reaching a goal. Following the literature, we adopt dependence uncertainty to model the dependence ambiguity between financial risk (or insurable risk) and background risk. Because the goal-reaching objective function is non-concave, these two problems bring highly unconventional and challenging issues for which classical optimization techniques often fail. Using quantile formulation method, we derive the optimal solutions explicitly. The results show that the presence of background risk does not alter the shape of the solution but instead changes the parameter value of the solution. Finally, numerical examples are given to illustrate the results and verify the robustness of our solutions.
We present an online approach to portfolio selection. The motivation is within the context of algorithmic trading, which demands fast and recursive updates of portfolio allocations, as new data arrives. In particular, we look at two online algorithms : Robust-Exponentially Weighted Least Squares (R-EWRLS) and a regularized Online minimum Variance algorithm (O-VAR). Our methods use simple ideas from signal processing and statistics, which are sometimes overlooked in the empirical financial literature. The two approaches are evaluated against benchmark allocation techniques using 4 real datasets. Our methods outperform the benchmark allocation techniques in these datasets, in terms of both computational demand and financial performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا