ﻻ يوجد ملخص باللغة العربية
Taking advantage of more than 11 years of Fermi-LAT data, we perform a new and deep analysis of the pulsar wind nebula (PWN) HESS J1825-137. Combining this analysis with recent H.E.S.S. results we investigate and constrain the particle transport mechanisms at work inside the source as well as the system evolution. The PWN is studied using 11.6 years of Fermi-LAT data between 1 GeV and 1 TeV. In particular, we present the results of the spectral analysis and the first energy-resolved morphological study of the PWN HESS J1825-137 at GeV energies, which provide new insights into the gamma-ray characteristics of the nebula. An optimised analysis of the source returns an extended emission region larger than 2$^{circ}$, corresponding to an intrinsic size of about 150 pc, making HESS J1825-137 the most extended gamma-ray PWN currently known. The nebula presents a strong energy dependent morphology within the GeV range, moving from a radius of $sim1.4^circ$ below 10 GeV to a radius of $sim$0.8$^circ$ above 100 GeV, with a shift in the centroid location. Thanks to the large extension and peculiar energy-dependent morphology, it is possible to constrain the particle transport mechanisms inside the PWN HESS J1825-137. Using the variation of the source extension and position, as well as the constraints on the particle transport mechanisms, we present a scheme for the possible evolution of the system. Finally, we provide an estimate of the electron energy density and we discuss its nature in the PWN and TeV halo-like scenario.
Taking advantage of 10 years of Fermi-LAT data, we perform a new and deep analysis of the pulsar wind nebula (PWN) HESS J1825-137. We present the results of the spectral analysis and of the first energy-resolved morphological study of the PWN HESS J1
Aims: We present a detailed view of the pulsar wind nebula (PWN) HESS J1825-137. We aim to constrain the mechanisms dominating the particle transport within the nebula, accounting for its anomalously large size and spectral characteristics. Methods:
We present a new and deep analysis of the pulsar wind nebula (PWN) HESS,J1825--137 with a comprehensive data set of almost 400 hours taken with the H.E.S.S. array between 2004 and 2016. The large amount of data, and the inclusion of low-threshold H.E
The pulsar wind nebula (PWN) HESS~J1825-137, known to exhibit strong energy dependent morphology, was discovered by HESS in 2005. Powered by the pulsar PSR~B1823-13, the TeV gamma-ray emitting nebula is significantly offset from the pulsar. The asymm
HESS J1825-137 was detected with a significance of 8.1 $sigma$ in the Galactic Plane survey conducted with the H.E.S.S. instrument in 2004. Both HESS J1825-137 and the X-ray pulsar wind nebula G18.0--0.7 (associated with the Vela-like pulsar PSR B182