ﻻ يوجد ملخص باللغة العربية
Single molecule fluorescence detection of barium is investigated for enhancing the sensitivity and robustness of a neutrinoless double beta decay ($0 ubetabeta$) search in $^{136}$Xe, the discovery of which would alter our understanding of the nature of neutrinos and the early history of the Universe. A key developmental step is the synthesis of barium-selective chemosensors capable of incorporation into ongoing experiments in high-pressure $^{136}$Xe gas. Here we report turn-on fluorescent naphthalimide chemosensors containing monoaza- and diaza-crown ethers as agents for single Ba$^{2+}$ detection. Monoaza-18-crown-6 ether naphthalimide sensors showed sensitivity primarily to Ba$^{2+}$ and Hg$^{2+}$, whereas two diaza-18-crown-6 ether naphthalimides revealed a desirable selectivity toward Ba$^{2+}$. Solution-phase fluorescence and NMR experiments support a photoinduced electron transfer mechanism enabling turn-on fluorescence sensing in the presence of barium ions. Changes in ion-receptor interactions enable effective selectivity between competitive barium, mercury, and potassium ions, with detailed calculations correctly predicting fluorescence responses. With these molecules, dry-phase single Ba$^{2+}$ ion imaging with turn-on fluorescence is realized using oil-free microscopy techniques. This represents a significant advance toward a practical method of single Ba$^{2+}$ detection within large volumes of $^{136}$Xe, plausibly enabling a background-free technique to search for the hypothetical process of $0 ubetabeta$.
A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has bee
The search for neutrinoless double beta decay probes the fundamental properties of neutrinos, including whether or not the neutrino and antineutrino are distinct. Double beta detectors are large and expensive, so background reduction is essential for
Background rejection is key to success for future neutrinoless double beta decay experiments. To achieve sensitivity to effective Majorana lifetimes of $sim10^{28}$ years, backgrounds must be controlled to better than 0.1 count per ton per year, beyo
We present an update on the development of techniques to adapt Single Molecule Fluorescent Imaging for the tagging of individual barium ions in high pressure xenon gas detectors, with the goal of realizing a background-free neutrinoless double beta d
The search for neutrinoless double beta decay requires increasingly advanced methods of background reduction. A bold approach to solving this problem, in experiments using Xe-136, is to extract and identify the daughter Ba-136 ion produced by double