ﻻ يوجد ملخص باللغة العربية
We investigated the precise crystal structures and electronic states in a quasi-two-dimensional molecular conductor ${alpha}$-(BETS)$_2$I$_3$ at ambient pressure. The electronic resistivity of this molecular solid shows metal-to-insulator (MI) crossover at $T_{MI}$=50 K. Our x-ray diffraction and $^{13}$C nuclear magnetic resonance experiments revealed that ${alpha}$-(BETS)$_2$I$_3$ maintains the inversion symmetry below $T_{MI}$. First-principles calculations found a pair of anisotropic Dirac cones at a general k-point, with the degenerate contact points at the Fermi level. The origin of the insulating state in this system is a small energy gap of ~2 meV opened by the spin-orbit interaction. The Z$_2$ topological invariants indicate that this system is a weak topological insulator. Our results suggest that ${alpha}$-(BETS)$_2$I$_3$ is a promising material for studying the bulk Dirac electron system in two dimensions.
We employed first-principles density-functional theory (DFT) calculations to characterize Dirac electrons in quasi-two-dimensional molecular conductor $alpha$-(BETS)$_2$I$_3$ [= $alpha$-(BEDT-TSeF)$_2$I$_3$] at a low temperature of 30K. We provide a
Effect of spin-orbit coupling (SOC) on Dirac electrons in the organic conductor $alpha$-(BETS)$_2$I$_3$ [BETS = bis(ethylenedithio)tetraselenafulvalene] has been examined by calculating electric conductivity and spin magnetic susceptibility. A tight-
We investigate the effect of strong electronic correlation on the massless Dirac fermion system, $alpha$-(BEDT-TTF)$_2$I$_3$, under pressure. In this organic salt, one can control the electronic correlation by changing pressure and access the quantum
By deriving a tight-binding model, we demonstrate a mechanism of forming a nodal line of Dirac points in a single-component molecular conductor [Pt(dmtd)$_2$] [Zhou {it et al.}, Chem. Commun. {bfseries 55}, 3327 (2019)], consisting of HOMO and LUMO.
We report on the Shubnikov de Haas (SdH) oscillations in the quasi two-dimensional molecular conductor $alpha-$(BETS)$_{2}$I$_{3}$ [BETS: bis(ethylenedithio)tetraselenafulvalene] laminated on polyimide films at 1.7 K. From the SdH phase factor, we ve