ﻻ يوجد ملخص باللغة العربية
We explore the use of the baryonic Tully-Fisher relation (bTFR) as a new distance indicator. Advances in near-IR imaging and stellar population models, plus precise rotation curves, have reduced the scatter in the bTFR such that distance is the dominant source of uncertainty. Using 50 galaxies with accurate distances from Cepheids or tip magnitude of the red giant branch, we calibrate the bTFR on a scale independent of $H_o$. We then apply this calibrated bTFR to 95 independent galaxies from the SPARC sample, using CosmicFlows-3 velocities, to deduce the local value of $H_o$. We find $H_o$ = 75.1 +/- 2.3 (stat) +/- 1.5 (sys) km s$^{-1}$ Mpc$^{-1}$.
We validate the baryonic Tully Fisher (BTF) relation by exploring the Tully Fish er (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from: Sakai et al. (2000) calibrator sample; McGaugh et al. (2000: MC20
[abr.] Using the multi-integral-field spectrograph GIRAFFE at VLT, we previsouly derived the stellar-mass Tully-Fisher Relation (smTFR) at z~0.6, and found that the distant relation is systematically offset by roughly a factor of two toward lower mas
In a LCDM cosmology, the baryonic Tully-Fisher relation (BTFR) is expected to show significant intrinsic scatter resulting from the mass-concentration relation of dark matter halos and the baryonic-to-halo mass ratio. We study the BTFR using a sample
We estimate the stellar masses of disk galaxies with two independent methods: a photometrically self-consistent color$-$mass-to-light ratio relation (CMLR) from population synthesis models, and the Baryonic Tully-Fisher relation (BTFR) calibrated by