ﻻ يوجد ملخص باللغة العربية
We present a search for anisotropic cosmic birefringence in 500 deg$^2$ of southern sky observed at 150 GHz with the SPTpol camera on the South Pole Telescope. We reconstruct a map of cosmic polarization rotation anisotropies using higher-order correlations between the observed cosmic microwave background (CMB) $E$ and $B$ fields. We then measure the angular power spectrum of this map, which is found to be consistent with zero. The non-detection is translated into an upper limit on the amplitude of the scale-invariant cosmic rotation power spectrum, $L(L+1)C_L^{alphaalpha}/2pi < 0.10 times 10^{-4}$ rad$^2$ (0.033 deg$^2$, 95% C.L.). This upper limit can be used to place constraints on the strength of primordial magnetic fields, $B_{1 rm Mpc} < 17 {rm nG} $ (95% C.L.), and on the coupling constant of the Chern-Simons electromagnetic term $g_{agamma} < 4.0 times 10^{-2}/H_I $ (95% C.L.), where $H_I$ is the inflationary Hubble scale. For the first time, we also cross-correlate the CMB temperature fluctuations with the reconstructed rotation angle map, a signal expected to be non-vanishing in certain theoretical scenarios, and find no detectable signal. We perform a suite of systematics and consistency checks and find no evidence for contamination.
We report a B-mode power spectrum measurement from the cosmic microwave background (CMB) polarization anisotropy observations made using the SPTpol instrument on the South Pole Telescope. This work uses 500 deg$^2$ of SPTpol data, a five-fold increas
We report the first detection of gravitational lensing due to galaxy clusters using only the polarization of the cosmic microwave background (CMB). The lensing signal is obtained using a new estimator that extracts the lensing dipole signature from s
We present a measurement of the $B$-mode polarization power spectrum (the $BB$ spectrum) from 100 $mathrm{deg}^2$ of sky observed with SPTpol, a polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in
The search for cosmic polarization rotation or birefringence in the CMB is well-motivated because it can provide powerful constraints on parity-violating new physics, such as axion-like particles. In this paper we point out that since the CMB polariz
We present a measurement of the cosmic microwave background (CMB) lensing potential using 500 deg$^2$ of 150 GHz data from the SPTpol receiver on the South Pole Telescope. The lensing potential is reconstructed with signal-to-noise per mode greater t