ترغب بنشر مسار تعليمي؟ اضغط هنا

The Statistical Cost of Robust Kernel Hyperparameter Tuning

141   0   0.0 ( 0 )
 نشر من قبل Raphael Meyer
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the statistical complexity of kernel hyperparameter tuning in the setting of active regression under adversarial noise. We consider the problem of finding the best interpolant from a class of kernels with unknown hyperparameters, assuming only that the noise is square-integrable. We provide finite-sample guarantees for the problem, characterizing how increasing the complexity of the kernel class increases the complexity of learning kernel hyperparameters. For common kernel classes (e.g. squared-exponential kernels with unknown lengthscale), our results show that hyperparameter optimization increases sample complexity by just a logarithmic factor, in comparison to the setting where optimal parameters are known in advance. Our result is based on a subsampling guarantee for linear regression under multiple design matrices, combined with an {epsilon}-net argument for discretizing kernel parameterizations.



قيم البحث

اقرأ أيضاً

With the surge in the number of hyperparameters and training times of modern machine learning models, hyperparameter tuning is becoming increasingly expensive. Although methods have been proposed to speed up tuning via knowledge transfer, they typica lly require the final performance of hyperparameters and do not focus on low-fidelity information. Nevertheless, this common practice is suboptimal and can incur an unnecessary use of resources. It is more cost-efficient to instead leverage the low-fidelity tuning observations to measure inter-task similarity and transfer knowledge from existing to new tasks accordingly. However, performing multi-fidelity tuning comes with its own challenges in the transfer setting: the noise in the additional observations and the need for performance forecasting. Therefore, we conduct a thorough analysis of the multi-task multi-fidelity Bayesian optimization framework, which leads to the best instantiation--amortized auto-tuning (AT2). We further present an offline-computed 27-task hyperparameter recommendation (HyperRec) database to serve the community. Extensive experiments on HyperRec and other real-world databases illustrate the effectiveness of our AT2 method.
The performance of optimizers, particularly in deep learning, depends considerably on their chosen hyperparameter configuration. The efficacy of optimizers is often studied under near-optimal problem-specific hyperparameters, and finding these settin gs may be prohibitively costly for practitioners. In this work, we argue that a fair assessment of optimizers performance must take the computational cost of hyperparameter tuning into account, i.e., how easy it is to find good hyperparameter configurations using an automatic hyperparameter search. Evaluating a variety of optimizers on an extensive set of standard datasets and architectures, our results indicate that Adam is the most practical solution, particularly in low-budget scenarios.
Tuning machine learning models at scale, especially finding the right hyperparameter values, can be difficult and time-consuming. In addition to the computational effort required, this process also requires some ancillary efforts including engineerin g tasks (e.g., job scheduling) as well as more mundane tasks (e.g., keeping track of the various parameters and associated results). We present Auptimizer, a general Hyperparameter Optimization (HPO) framework to help data scientists speed up model tuning and bookkeeping. With Auptimizer, users can use all available computing resources in distributed settings for model training. The user-friendly system design simplifies creating, controlling, and tracking of a typical machine learning project. The design also allows researchers to integrate new HPO algorithms. To demonstrate its flexibility, we show how Auptimizer integrates a few major HPO techniques (from random search to neural architecture search). The code is available at https://github.com/LGE-ARC-AdvancedAI/auptimizer.
Recent work on hyperparameters optimization (HPO) has shown the possibility of training certain hyperparameters together with regular parameters. However, these online HPO algorithms still require running evaluation on a set of validation examples at each training step, steeply increasing the training cost. To decide when to query the validation loss, we model online HPO as a time-varying Bayesian optimization problem, on top of which we propose a novel textit{costly feedback} setting to capture the concept of the query cost. Under this setting, standard algorithms are cost-inefficient as they evaluate on the validation set at every round. In contrast, the cost-efficient GP-UCB algorithm proposed in this paper queries the unknown function only when the model is less confident about current decisions. We evaluate our proposed algorithm by tuning hyperparameters online for VGG and ResNet on CIFAR-10 and ImageNet100. Our proposed online HPO algorithm reaches human expert-level performance within a single run of the experiment, while incurring only modest computational overhead compared to regular training.
The objective in statistical Optimal Transport (OT) is to consistently estimate the optimal transport plan/map solely using samples from the given source and target marginal distributions. This work takes the novel approach of posing statistical OT a s that of learning the transport plans kernel mean embedding from sample based estimates of marginal embeddings. The proposed estimator controls overfitting by employing maximum mean discrepancy based regularization, which is complementary to $phi$-divergence (entropy) based regularization popularly employed in existing estimators. A key result is that, under very mild conditions, $epsilon$-optimal recovery of the transport plan as well as the Barycentric-projection based transport map is possible with a sample complexity that is completely dimension-free. Moreover, the implicit smoothing in the kernel mean embeddings enables out-of-sample estimation. An appropriate representer theorem is proved leading to a kernelized convex formulation for the estimator, which can then be potentially used to perform OT even in non-standard domains. Empirical results illustrate the efficacy of the proposed approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا