ﻻ يوجد ملخص باللغة العربية
Antiferromagnets display enormous potential in spintronics owing to its intrinsic nature, including terahertz resonance, multilevel states, and absence of stray fields. Combining with the layered nature, van der Waals (vdW) antiferromagnets hold the promise in providing new insights and new designs in two-dimensional (2D) spintronics. The zero net magnetic moments of vdW antiferromagnets strengthens the spin stability, however, impedes the correlation between spin and other excitation elements, like excitons. Such coupling is urgently anticipated for fundamental magneto-optical studies and potential opto-spintronic devices. Here, we report an ultra-sharp excitonic emission with excellent monochromaticity in antiferromagnetic nickel phosphorus trisulfides (NiPS3) from bulk to atomically thin flakes. We prove that the linear polarization of the excitonic luminescence is perpendicular to the ordered spin orientation in NiPS3. By applying an in-plane magnetic field to alter the spin orientation, we further manipulate the excitonic emission polarization. Such strong correlation between exciton and spins provides new insights for the study of magneto-optics in 2D materials, and hence opens a path for developing opto-spintronic devices and antiferromagnet-based quantum information technologies.
Inversion symmetric materials are forbidden to show an overall spin texture in their band structure in the presence of time-reversal symmetry. However, in van der Waals materials which lack inversion symmetry within a single layer, it has been propos
We predict that antiferromagnetic bilayers formed from van der Waals (vdW) materials, like bilayer CrI$_3$, have a strong magnetoelectric response that can be detected by measuring the gate voltage dependence of Faraday or Kerr rotation signals, tota
The band structure of transition metal dichalcogenides (TMDCs) with valence band edges at different locations in the momentum space could be harnessed to build devices that operate relying on the valley degree of freedom. To realize such valleytronic
Excitons in monolayer semiconductors have large optical transition dipole for strong coupling with light field. Interlayer excitons in heterobilayers, with layer separation of electron and hole components, feature large electric dipole that enables s
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der