ﻻ يوجد ملخص باللغة العربية
The study of planet occurrence as a function of stellar mass is important for a better understanding of planet formation. Estimating stellar mass, especially in the red giant regime, is difficult. In particular, stellar masses of a sample of evolved planet-hosting stars based on spectroscopy and grid-based modelling have been put to question over the past decade with claims they were overestimated. Although efforts have been made in the past to reconcile this dispute using asteroseismology, results were inconclusive. In an attempt to resolve this controversy, we study four more evolved planet-hosting stars in this paper using asteroseismology, and we revisit previous results to make an informed study of the whole ensemble in a self-consistent way. For the four new stars, we measure their masses by locating their characteristic oscillation frequency, $mathrm{ u}_{mathrm{max}}$, from their radial velocity time series observed by SONG. For two stars, we are also able to measure the large frequency separation, $mathrm{Delta u}$, helped by extended SONG single-site and dual-site observations and new TESS observations. We establish the robustness of the $mathrm{ u}_{mathrm{max}}$-only-based results by determining the stellar mass from $mathrm{Delta u}$, and from both $mathrm{Delta u}$ and $mathrm{ u}_{mathrm{max}}$. We then compare the seismic masses of the full ensemble of 16 stars with the spectroscopic masses from three different literature sources. We find an offset between the seismic and spectroscopic mass scales that is mass-dependent, suggesting that the previously claimed overestimation of spectroscopic masses only affects stars more massive than about 1.6 M$_mathrm{odot}$.
To better understand how planets form, it is important to study planet occurrence rates as a function of stellar mass. However, estimating masses of field stars is often difficult. Over the past decade, a controversy has arisen about the inferred occ
LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ~50 au. The planet candidates, on the other hand, re
Exoplanet surveys of evolved stars have provided increasing evidence that the formation of giant planets depends not only on stellar metallicity ([Fe/H]), but also the mass ($M_star$). However, measuring accurate masses for subgiants and giants is fa
Doppler-based planet surveys point to an increasing occurrence rate of giant planets with stellar mass. Such surveys rely on evolved stars for a sample of intermediate-mass stars (so-called retired A stars), which are more amenable to Doppler observa
The Transiting Exoplanet Survey Satellite (TESS) is an all-sky survey mission aiming to search for exoplanets that transit bright stars. The high-quality photometric data of TESS are excellent for the asteroseismic study of solar-like stars. In this