ﻻ يوجد ملخص باللغة العربية
At this moment, GAN-based image generation methods are still imperfect, whose upsampling design has limitations in leaving some certain artifact patterns in the synthesized image. Such artifact patterns can be easily exploited (by recent methods) for difference detection of real and GAN-synthesized images. However, the existing detection methods put much emphasis on the artifact patterns, which can become futile if such artifact patterns were reduced. Towards reducing the artifacts in the synthesized images, in this paper, we devise a simple yet powerful approach termed FakePolisher that performs shallow reconstruction of fake images through a learned linear dictionary, intending to effectively and efficiently reduce the artifacts introduced during image synthesis. The comprehensive evaluation on 3 state-of-the-art DeepFake detection methods and fake images generated by 16 popular GAN-based fake image generation techniques, demonstrates the effectiveness of our technique.Overall, through reducing artifact patterns, our technique significantly reduces the accuracy of the 3 state-of-the-art fake image detection methods, i.e., 47% on average and up to 93% in the worst case.
The novelty and creativity of DeepFake generation techniques have attracted worldwide media attention. Many researchers focus on detecting fake images produced by these GAN-based image generation methods with fruitful results, indicating that the GAN
Recent advances in autoencoders and generative models have given rise to effective video forgery methods, used for generating so-called deepfakes. Mitigation research is mostly focused on post-factum deepfake detection and not on prevention. We compl
Generative deep learning algorithms have progressed to a point where it is difficult to tell the difference between what is real and what is fake. In 2018, it was discovered how easy it is to use this technology for unethical and malicious applicatio
Image forgery detection is the task of detecting and localizing forged parts in tampered images. Previous works mostly focus on high resolution images using traces of resampling features, demosaicing features or sharpness of edges. However, a good de
Progress in generative modelling, especially generative adversarial networks, have made it possible to efficiently synthesize and alter media at scale. Malicious individuals now rely on these machine-generated media, or deepfakes, to manipulate socia