ترغب بنشر مسار تعليمي؟ اضغط هنا

Pixel Level Decorrelation in Service of the textit{Spitzer} Microlens Parallax Survey

64   0   0.0 ( 0 )
 نشر من قبل Lisa Dang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microlens parallax measurements combining space-based and ground-based observatories can be used to study planetary demographics. In recent years, the Spitzer Space Telescope was used as a microlens parallax satellite. Meanwhile, textit{Spitzer} IRAC has been employed to study short-period exoplanets and their atmospheres. As these investigations require exquisite photometry, they motivated the development of numerous self-calibration techniques now widely used in the exoplanet atmosphere community. Specifically, Pixel Level Decorrelation (PLD) was developed for starring-mode observations in uncrowded fields. We adapt and extend PLD to make it suitable for observations obtained as part of the textit{Spitzer} Microlens Parallax Campaign. We apply our method to two previously published microlensing events, OGLE-2017-BLG-1140 and OGLE-2015-BLG-0448, and compare its performance to the state-of-the-art pipeline used to analyses textit{Spitzer} microlensing observation. We find that our method yields photometry 1.5--6 times as precise as previously published. In addition to being useful for textit{Spitzer}, a similar approach could improve microlensing photometry with the Nancy Grace Roman Space Telescope.



قيم البحث

اقرأ أيضاً

We present EVEREST, an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation (PLD) to remove systematics introduced by the spacecrafts pointing error and a Gaussian process ( GP) to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than $K_p approx 13$, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variability, asteroseismology, and other photometric studies. The EVEREST pipeline can also easily be applied to future surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets. The EVEREST light curves and the source code used to generate them are freely available online.
We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the ${it Spitzer}$ satellite in a solar orbit. At high magnification, the anomaly in the light curve was dense ly observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of $q=7.0 times 10^{-4}$ from the light-curve modeling. The ground-only and ${it Spitzer}$-only data each provide very strong one-dimensional (1-D) constraints on the 2-D microlens parallax vector $bf{pi_{rm E}}$. When combined, these yield a precise measurement of $bf{pi_{rm E}}$, and so of the masses of the host $M_{rm host}=0.56pm0.07,M_odot$ and planet $M_{rm planet} = 0.41 pm 0.05,M_{rm Jup}$. The system lies at a distance $D_{rm L}=5.2 pm 0.5 {rm kpc}$ from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is $a_{perp} = 3.5 pm 0.3 {rm au}$, i.e., just over twice the snow line. The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the ${it Gaia}$ proper-motion measurement of the source suffers from a catastrophic $10,sigma$ error.
We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was ~1 AU West of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Suns Galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.
We present the first space-based microlens parallax measurement of an isolated star. From the striking differences in the lightcurve as seen from Earth and from Spitzer (~1 AU to the West), we infer a projected velocity v_helio,projected ~ 250 km/s, which strongly favors a lens in the Galactic Disk with mass M=0.23 +- 0.07 M_sun and distance D_L=3.1 +- 0.4 kpc. An ensemble of such measurements drawn from our ongoing program could be used to measure the single-lens mass function including dark objects, and also is necessary for measuring the Galactic distribution of planets since the ensemble reflects the underlying Galactic distribution of microlenses. We study the application of the many ideas to break the four-fold degeneracy first predicted by Refsdal 50 years ago. We find that this degeneracy is clearly broken, but by two unanticipated mechanisms.
62 - Subo Dong , A. Udalski , A. Gould 2007
We combine Spitzer and ground-based observations to measure the microlens parallax of OGLE-2005-SMC-001, the first such space-based determination since S. Refsdal proposed the idea in 1966. The parallax measurement yields a projected velocity tilde v ~ 230 km/s, the typical value expected for halo lenses, but an order of magnitude smaller than would be expected for lenses lying in the Small Magellanic Cloud (SMC) itself. The lens is a weak (i.e., non-caustic-crossing) binary, which complicates the analysis considerably but ultimately contributes additional constraints. Using a test proposed by Assef et al. (2006), which makes use only of kinematic information about different populations but does not make any assumptions about their respective mass functions, we find that the likelihood ratio is L_halo/L_SMC = 20. Hence, halo lenses are strongly favored but SMC lenses are not definitively ruled out. Similar Spitzer observations of additional lenses toward the Magellanic Clouds would clarify the nature of the lens population. The Space Interferometry Mission could make even more constraining measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا