ﻻ يوجد ملخص باللغة العربية
We propose a customized convolutional neural network based autoencoder called a hierarchical autoencoder, which allows us to extract nonlinear autoencoder modes of flow fields while preserving the contribution order of the latent vectors. As preliminary tests, the proposed method is first applied to a cylinder wake at $Re_D$ = 100 and its transient process. It is found that the proposed method can extract the features of these laminar flow fields as the latent vectors while keeping the order of their energy content. The present hierarchical autoencoder is further assessed with a two-dimensional $y-z$ cross-sectional velocity field of turbulent channel flow at $Re_{tau}$ = 180 in order to examine its applicability to turbulent flows. It is demonstrated that the turbulent flow field can be efficiently mapped into the latent space by utilizing the hierarchical model with a concept of ordered autoencoder mode family. The present results suggest that the proposed concept can be extended to meet various demands in fluid dynamics including reduced order modeling and its combination with linear theory-based methods by using its ability to arrange the order of the extracted nonlinear modes.
We present a new nonlinear mode decomposition method to visualize the decomposed flow fields, named the mode decomposing convolutional neural network autoencoder (MD-CNN-AE). The proposed method is applied to a flow around a circular cylinder at $Re_
A novel hybrid deep neural network architecture is designed to capture the spatial-temporal features of unsteady flows around moving boundaries directly from high-dimensional unsteady flow fields data. The hybrid deep neural network is constituted by
Particle-in-Cell (PIC) methods are widely used computational tools for fluid and kinetic plasma modeling. While both the fluid and kinetic PIC approaches have been successfully used to target either kinetic or fluid simulations, little was done to co
Reduced Order Modeling (ROM) for engineering applications has been a major research focus in the past few decades due to the unprecedented physical insight into turbulence offered by high-fidelity CFD. The primary goal of a ROM is to model the key ph
A new simulation method for solving fluid-structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation (Hirt and Nichols (1981