ﻻ يوجد ملخص باللغة العربية
Motivated by the observation of non-exponential run-time distributions of bacterial swimmers, we propose a minimal phenomenological model for taxis of active particles whose motion is controlled by an internal clock. The ticking of the clock depends on an external concentration field, e.g. a chemical substance. We demonstrate that these particles can detect concentration gradients and respond to them by moving up- or down-gradient depending on the clock design, albeit measurements of these fields are purely local in space and instantaneous in time. Altogether, our results open a new route in the study of directional navigation, by showing that the use of a clock to control motility actions represents a generic and versatile toolbox to engineer behavioral responses to external cues, such as light, chemical, or temperature gradients.
Using Brownian dynamics simulations, the motion of active Brownian particles (ABPs) in the presence of fuel (or food) sources is studied. It is an established fact that within confined stationary systems, the activity of ABPs generates density profil
Active particles with their characteristic feature of self-propulsion are regarded as the simplest models for motility in living systems. The accumulation of active particles in low activity regions has led to the general belief that chemotaxis requi
Biochemical reactions are fundamentally noisy at a molecular scale. This limits the precision of reaction networks, but also allows fluctuation measurements which may reveal the structure and dynamics of the underlying biochemical network. Here, we s
Conspectus: The ability to navigate in chemical gradients, called chemotaxis, is crucial for the survival of microorganisms. It allows them to find food and to escape from toxins. Many microorganisms can produce the chemicals to which they respond th
Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can pow