ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic reduction of the proton-removal cross section in neutron-rich medium-mass nuclei

87   0   0.0 ( 0 )
 نشر من قبل Jose Benlliure
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Single neutron- and proton-removal cross sections have been systematically measured for 72 medium-mass neutron-rich nuclei around Z=50 and energies around 900A MeV using the FRagment Separator (FRS) at GSI. Neutron-removal cross sections are described by considering the knock-out process together with initial- and final-state interactions. Proton-removal cross sections are, however, significantly smaller than predicted by the same calculations. The observed difference can be explained as due to the knockout of short-correlated protons in neutron-proton dominating pairs.



قيم البحث

اقرأ أيضاً

117 - D. Q. Fang , Y. G. Ma , X. Z. Cai 2010
We study the relation between neutron removal cross section ($sigma_{-N}$) and neutron skin thickness for finite neutron rich nuclei using the statistical abrasion ablation (SAA) model. Different sizes of neutron skin are obtained by adjusting the di ffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between $sigma_{-N}$ and the neutron skin thickness for neutron rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for the neutron skin thickness in neutron rich nuclei.
The dependence of fusion dynamics on neutron excess for light nuclei is extracted. This is accomplished by comparing the average fusion cross-section at energies just above the fusion barrier for $^{12-15}$C + $^{12}$C with measurements of the intera ction cross-section from high evergy collisions. The experimental results indicate that the fusion cross-section associated with dynamics increases with increasing neutron excess. Calculations with a time-dependent Hartree-Fock model fail to describe the observed trend.
A systematic study of high energy, one-neutron removal reactions on 23 neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The longitudinal momentum distributions of the core fragments and corresponding single-neutron removal cross sections are reported for reactions on a carbon target. Extended Glauber model calculations, weighted by the spectroscopic factors obtained from shell model calculations, are compared to the experimental results. Conclusions are drawn regarding the use of such reactions as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C, 19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C is discussed.
The neutron-rich 6He and 8He isotopes exhibit an exotic nuclear structure that consists of a tightly bound 4He-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in l aser trapping and cooling these short-lived, rare helium atoms, and have measured the atomic isotope shifts along the 4He-6He-8He chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations, and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.
The differential cross section for proton-proton elastic scattering has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12-16 degrees to 25-30 degrees, depending on the en ergy. Absolute normalisations of typically 3% were achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon a partial wave analysis. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا