ﻻ يوجد ملخص باللغة العربية
We prove Moderate Deviation estimates for nodal lengths of random spherical harmonics both on the whole sphere and on shrinking spherical domains. Central Limit Theorems for the latter were recently established in Marinucci, Rossi and Wigman (2020) and Todino (2020) respectively. Our proofs are based on the combination of a Moderate Deviation Principle by Schulte and Thale (2016) for sequences of random variables living in a fixed Wiener chaos with a well-known result based on the concept of exponential equivalence.
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We describe precise a
In this paper, we are concerned with SIR epidemics in a random environment on complete graphs, where every edges are assigned with i.i.d. weights. Our main results give large and moderate deviation principles of sample paths of this model.
Taking into account some likeness of moderate deviations (MD) and central limit theorems (CLT), we develop an approach, which made a good showing in CLT, for MD analysis of a family $$ S^kappa_t=frac{1}{t^kappa}int_0^tH(X_s)ds, ttoinfty $$ for an er
A Cramer-type moderate deviation theorem quantifies the relative error of the tail probability approximation. It provides theoretical justification when the limiting tail probability can be used to estimate the tail probability under study. Chen Fang
Large and moderate deviation principles are proved for Engel continued fractions, a new type of continued fraction expansion with non-decreasing partial quotients in number theory.