We show that given a desired closed-loop response for a system, there exists an affine subspace of controllers that achieve this response. By leveraging the existence of this subspace, we are able to separate controller design from closed-loop design by first synthesizing the desired closed-loop response and then synthesizing a controller that achieves the desired response. This is a useful extension to the recently introduced System Level Synthesis framework, in which the controller and closed-loop response are jointly synthesized and we cannot enforce controller-specific constraints without subjecting the closed-loop map to the same constraints. We demonstrate the importance of separating controller design from closed-loop design with an example in which communication delay and locality constraints cause standard SLS to be infeasible. Using our new two-step procedure, we are able to synthesize a controller that obeys the constraints while only incurring a 3% increase in LQR cost compared to the optimal LQR controller.