ﻻ يوجد ملخص باللغة العربية
The propagation of a relativistic electron-positron beam in a magnetized electron-ion plasma is studied, focusing on the polarization of the radiation generated in this case. Special emphasis is laid on investigating the polarization of the generated radiation for a range of beam-plasma parameters, transverse and longitudinal beam sizes, and the external magnetic fields. Our results not only help in understanding the high degrees of circular polarization observed in gamma-rays bursts but they also help in distinguishing the different modes associated with the filamentation dynamics of the pair-beam in laboratory astrophysics experiments.
A relativistic electron-positron beam propagating through a magnetized electron-ion plasma is shown to generate both circularly and linearly polarized synchrotron radiation. The degrees of circular and linear polarizations depend both on the density
Influence of the plasma collisions on the laser-driven collisionless shock formation and subsequent ion acceleration is studied on the basis of two different collisional algorithms and their implementations in two well-known particle-in-cell codes EP
The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic (MHD) instabilities and other high-$beta$ phenomena with astrophysically relevant parameters. A 3
Betatron x-ray source from laser plasma interaction combines high brightness, few femtosecond duration and broad band energy spectrum. However, despite these unique features the Betatron source has a crippling drawback preventing its use for applicat
The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision o