ﻻ يوجد ملخص باللغة العربية
Generative adversarial networks (GANs) are pairs of artificial neural networks that are trained one against each other. The outputs from a generator are mixed with the real-world inputs to the discriminator and both networks are trained until an equilibrium is reached, where the discriminator cannot distinguish generated inputs from real ones. Since their introduction, GANs have allowed for the generation of impressive imitations of real-life films, images and texts, whose fakeness is barely noticeable to humans. Despite their impressive performance, training GANs remains to this day more of an art than a reliable procedure, in a large part due to training process stability. Generators are susceptible to mode dropping and convergence to random patterns, which have to be mitigated by computationally expensive multiple restarts. Curiously, GANs bear an uncanny similarity to a co-evolution of a pathogen and its hosts immune system in biology. In a biological context, the majority of potential pathogens indeed never make it and are kept at bay by the hots immune system. Yet some are efficient enough to present a risk of a serious condition and recurrent infections. Here, we explore that similarity to propose a more robust algorithm for GANs training. We empirically show the increased stability and a better ability to generate high-quality images while using less computational power.
Neural networks have shown great potential in many applications like speech recognition, drug discovery, image classification, and object detection. Neural network models are inspired by biological neural networks, but they are optimized to perform m
Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from va
In this study we determined neural network weights and biases by Imperialist Competitive Algorithm (ICA) in order to train network for predicting earthquake intensity in Richter. For this reason, we used dependent parameters like earthquake occurrenc
We explore the influence of precision of the data and the algorithm for the simulation of chaotic dynamics by neural networks techniques. For this purpose, we simulate the Lorenz system with different precisions using three different neural network t
A boundary evolution Algorithm (BEA) is proposed by simultaneously taking into account the bottom and the high-level crossover and mutation, ie., the boundary of the hierarchical genetic algorithm. Operators and optimal individuals based on optional annealing are designed. Based on the numerou