ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissecting the Strong-lensing Galaxy Cluster MS 0440.5+0204. I. The Mass Density Profile

92   0   0.0 ( 0 )
 نشر من قبل Tomas Verdugo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a parametric strong lensing modeling of the galaxy cluster MS,0440.5+0204 (located at $z$ = 0.19). We have performed a strong lensing mass reconstruction of the cluster using three different models. The first model uses the image positions of four multiple imaged systems (providing 26 constraints). The second one combines strong lensing constraints with dynamical information (velocity dispersion) of the cluster. The third one uses the mass calculated from weak lensing as an additional constraint. Our three models reproduce equally well the image positions of the arcs, with a root-mean-square image equal to $approx$0.5$arcsec$. However, in the third model, the inclusion of the velocity dispersion and the weak-lensing mass allows us to obtain better constraints in the scale radius and the line-of-sight velocity dispersion of the mass profile. For this model, we obtain $r_s$ = 132$^{+30}_{-32}$ kpc, $sigma_s$ = 1203$^{+46}_{-47}$ km s$^{-1}$, M$_{200}$ = 3.1$^{+0.6}_{-0.6}$ $times10^{14}$,M$_{odot}$, and a high concentration, $c_{200}$ = 9.9$^{+2.2}_{-1.4}$. Finally, we used our derived mass profile to calculate the mass up to 1.5 Mpc. We compare it with X-ray estimates previously reported, finding a good agreement.



قيم البحث

اقرأ أيضاً

We present an optical study of the strong lensing galaxy cluster MS 0440.5$+$0204 at $z=0.19593$, based on CFHT/MegaCam g, r-photometry and GMOS/Gemini and CFHT/MOS/SIS spectroscopy in a broader area compared to previous works. We have determined new spectroscopic redshifts for the most prominent gravitational arcs surrounding the central galaxy in the cluster. The new redshifts and the information provided by the photometric catalog yield us to perform a detailed weak and strong lensing mass reconstruction of the cluster. The large number of member galaxies and the area covered by our observations allow to estimate more accurately the velocity dispersion and mass of cluster and examine in detail the nature of the cluster and surroundings structures. The dynamical mass is in good agreement with the mass inferred from the lensing analysis and X-ray estimates. About $sim$68% of the galaxies are located in the inner $lesssim$0.86 h$^{-1}_{70}$ Mpc region of the cluster. The galaxy redshift distribution in the inner region of the cluster shows a complex structure with at least three sub-structures along the line-of-sight. Other sub-structures are also identified in the galaxy density map and in the weak lensing mass map. The member galaxies in the North-East overdensity are distributed in a filament between MS 0440.5$+$0204 and ZwCL 0441.1$+$0211 clusters, suggesting that these two structures might be connected. MS 0440$+$0204 appears to be dynamically active, with a cluster core that is likely experiencing a merging process and with other nearby groups at projected distances of $lesssim$1 h$^{-1}_{70}$ Mpc that could be being accreted by the cluster.
124 - A. Monna , S. Seitz , I. Balestra 2016
We present a detailed strong lensing (SL) mass reconstruction of the core of the galaxy cluster MACSJ 2129.4-0741 ($rm z_{cl}=0.589$) obtained by combining high-resolution HST photometry from the CLASH survey with new spectroscopic observations from the CLASH-VLT survey. A background bright red passive galaxy at $rm z_{sp}=1.36$, sextuply lensed in the cluster core, has four radial lensed images located over the three central cluster members. Further 19 background lensed galaxies are spectroscopically confirmed by our VLT survey, including 3 additional multiple systems. A total of 31 multiple images are used in the lensing analysis. This allows us to trace with high precision the total mass profile of the cluster in its very inner region ($rm R<100$ kpc). Our final lensing mass model reproduces the multiple images systems identified in the cluster core with high accuracy of $0.4$. This translates to an high precision mass reconstruction of MACS 2129, which is constrained at level of 2%. The cluster has Einstein parameter $Theta_E=(29pm4)$, and a projected total mass of $rm M_{tot}(<Theta_E)=(1.35pm0.03)times 10^{14}M_{odot}$ within such radius. Together with the cluster mass profile, we provide here also the complete spectroscopic dataset for the cluster members and lensed images measured with VLT/VIMOS within the CLASH-VLT survey.
283 - Ole Host 2011
A standard method to study the mass distribution in galaxy clusters is through strong lensing of background galaxies in which the positions of multiple images of the same source constrain the surface mass distribution of the cluster. However, current parametrized mass models can often only reproduce the observed positions to within one or a few arcsec which is worse than the positional measurement uncertainty. One suggested explanation for this discrepancy is the additional perturbations of the path of the light ray caused by matter density fluctuations along the line of sight. We investigate this by calculating the statistical expectation value for the angular deflections caused by density fluctuations, which can be done given the matter power spectrum. We find that density fluctuations can, indeed, produce deflections of a few arcsec. We also find that the deflection angle of a particular image is expected to increase with source redshift and with the angular distance on the sky to the lens. Since the light rays of neighbouring images pass through much the same density fluctuations, it turns out that the images expected deflection angles can be highly correlated. This implies that line-of-sight density fluctuations are a significant and possibly dominant systematic for strong lensing mass modeling and set a lower limit to how well a cluster mass model can be expected to replicate the observed image positions. We discuss how the deflections and correlations should explicitly be taken into account in the mass model fitting procedure.
85 - Keiichi Umetsu 2011
We outline our methods for obtaining high precision mass profiles, combining independent weak-lensing distortion, magnification, and strong-lensing measurements. For massive clusters the strong and weak lensing regimes contribute equal logarithmic co verage of the radial profile. The utility of high-quality data is limited by the cosmic noise from large scale structure along the line of sight. This noise is overcome when stacking clusters, as too are the effects of cluster asphericity and substructure, permitting a stringent test of theoretical models. We derive a mean radial mass profile of four similar mass clusters of high-quality HST and Subaru images, in the range R=40kpc/h to 2800kpc/h, where the inner radial boundary is sufficiently large to avoid smoothing from miscentering effects. The stacked mass profile is detected at 58-sigma significance over the entire radial range, with the contribution from the cosmic noise included. We show that the projected mass profile has a continuously steepening gradient out to beyond the virial radius, in remarkably good agreement with the standard Navarro-Frenk-White form predicted for the family of CDM-dominated halos in gravitational equilibrium. The central slope is constrained to lie in the range, -dln{rho}/dln{r}=0.89^{+0.27}_{-0.39}. The mean concentration is c_{vir}=7.68^{+0.42}_{-0.40} (at a mean virial mass 1.54^{+0.11}_{-0.10}times 10^{15} M_{sun}/h), which is high for relaxed, high-mass clusters, but consistent with LCDM when a sizable projection bias estimated from N-body simulations is considered. This possible tension will be more definitively explored with new cluster surveys, such as CLASH, LoCuSS, Subaru HSC, and XXM-XXL, to construct the c-M relation over a wider mass range.
141 - Keiichi Umetsu 2016
The lensing signal around galaxy clusters can, in principle, be used to test detailed predictions for their average mass profile from numerical simulations. However, the intrinsic shape of the profiles can be smeared out when a sample that spans a wi de range of cluster masses is averaged in physical length units. This effect especially conceals rapid changes in gradient such as the steep drop associated with the splashback radius, a sharp edge corresponding to the outermost caustic in accreting halos. We optimize the extraction of such local features by scaling individual halo profiles to a number of spherical overdensity radii, and apply this method to 16 X-ray-selected high-mass clusters targeted in the Cluster Lensing And Supernova survey with Hubble. By forward-modeling the weak- and strong-lensing data presented by Umetsu et al., we show that, regardless of the scaling overdensity, the projected ensemble density profile is remarkably well described by an NFW or Einasto profile out to $R sim 2.5h^{-1}$Mpc, beyond which the profiles flatten. We constrain the NFW concentration to $c_{200c} = 3.66 pm 0.11$ at $M_{200c} simeq 1.0 times 10^{15}h^{-1}M_odot$, consistent with and improved from previous work that used conventionally stacked lensing profiles, and in excellent agreement with theoretical expectations. Assuming the profile form of Diemer & Kravtsov and generic priors calibrated from numerical simulations, we place a lower limit on the splashback radius of the cluster halos, if it exists, of $R_{sp}/r_{200m} > 0.89$ ($R_{sp} > 1.83h^{-1}$Mpc) at 68% confidence. The corresponding density feature is most pronounced when the cluster profiles are scaled by $r_{200m}$, and smeared out when scaled to higher overdensities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا